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Preface

Mechanical behavior is a discipline that studies the performance of materials under
the action of external forces, such as load, impact, bending, or pressure. Basically, it
is a part of physics aimed at the study of the stress-strain phenomena of solid
bodies. For the engineer, the knowledge of mechanical behavior is fundamental as it
provides the basics to analyze and understand the reaction of physical components
under the action of forces. The components specifically intended for bear, transmit,
or resist forces are called mechanical or structural, for example: beams, shafts,
piping, pressure vessels, gears, and etcetera; therefore, they have to be designed,
operated, and maintained to fulfill this requirement, and the Mechanical Behavior
discipline provides the basis for these tasks in addition to characterize the
mechanical properties of the materials used for the fabrication and construction.
Even components that are not intended to support loads as their primary function
must be designed to resist the action of eventual o secondary forces, such as dead
weight, impacts, wind, earthquakes, and etcetera. For example, a utility cable may
have the primary function of conducting electricity, but it has to resist the weight of
ice and snow, the wind pressure, and the weight of hanging objects during service.

This book describes the fundamentals of the stress and strain theory introduced
by Cauchŷ and others in the nineteenth century, as well as the mechanisms of
deformation, strengthening and fracture, applied to materials commonly used in
engineering, with emphasis on metals and alloys, but also entails polymers and
composite materials. Chapters 1 and 2 have to do with the definition of stress and
strain under the assumption that the solid body is continuous, homogeneous, and
isotropic; hence, this subject is known as Continuum Mechanics. In addition, the
method for stress transformation, known as Mohr’s Circle, the most yield criteria
and the elastic stress-strain relations are described, with emphasis on its practical
use in engineering. A brief description of the finite element method to perform the
numerical analysis of stress and strain and the experimental methods to measure
them are included and at the end of Chap. 2, and finally the hardness test is briefly
described.

v
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Chapter 3 describes the plastic strain mechanisms, primarily by dislocation slip,
aimed to understand the strengthening mechanisms of metals and alloys discussed in
Chap. 4. A section describing the basics of transmission electron microscopy as the
most used method for direct observation of dislocations is included in Chap. 3. Since
both plastic strain and strengthening mechanisms depend on the microstructure,
these chapters introduce basic concepts of metallurgy and heat treatment as the
means to control microstructure, and thus the mechanical properties. The mechanical
behavior of polymer and composite materials is described in Chap. 5.

The fracture phenomenon is studied in Chap. 6, presenting the basic concepts of
fracture along with a description of the mechanisms of brittle and ductile fracture,
followed by a comprehensive introduction to fracture mechanics and completed
with an introduction to structural integrity, as the in-field application of fracture
mechanics. The chapter concludes with a description of the Charpy impact test.
Chapter 7 entirely focused on fatigue, due to its importance as fracture mechanism
of in-service mechanical components, the interpretation of the S-N curve and the
fatigue life prediction methods are explained. The chapter concludes with a brief
introduction to fatigue crack growth.

Finally, Chap. 8 deals with high-temperature behavior, specifically the creep
phenomenon. The Larson-Miller method to determine creep life is described, as
well as the creep mechanisms of dislocation climb and grain boundary sliding. The
chapter concludes with the application of the phenomenological creep equations to
the design of high-temperature resistant materials.

Mexico City, México Jorge Luis González-Velázquez
April 2019
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Chapter 1
Stress

Abstract A brief introduction of the field of Mechanical Behavior and Engineering
Materials is given at the beginning of this chapter, where the importance of this field of
study is emphasized, followed by the scope of continuum mechanics study and the
definition of stress. By using these ideas, the mechanical behavior in uniaxial tension
and the design of structural components is described. A comprehensive description of
the Cauchŷ’s stress tensor is provided along with a simplified procedure to determine
the state of stress, illustrated with practical examples, to continue with a full
description of the stress transformation methods, both by matrix algebra and the
Mohr’s Circle methods. The description of the Tresca and VonMises yield criteria is
given, including solved problems and the use of two-dimension yield maps. The
chapter finalizes with a brief introduction to the stress concentration phenomenon.

1.1 Mechanical Behavior and Engineering Materials

Mechanical Behavior refers to the study of the relation among the loads that act
upon a solid body and the internal forces and strains produced as a result of such
action. It is “mechanical” because it deals with the analysis of forces and their
reactions on a solid body, regardless of the origin of the loads and without alteration
of the material. According to Newton’s third law, which is the foundation of
mechanics, to every action corresponds a reaction of equal magnitude and opposite
direction; so, whenever a force is applied on a solid static body, an internal reaction
force is produced in order to balance the external force and maintain the equilib-
rium. The magnitude of the internal reaction is the stress and the immediate effect of
the presence of stresses in a solid is the strain, therefore, the mechanical behavior
discipline analyses the stresses and strains within solids, and determines whether
the material have enough strength to withstand such forces without excessively
deforming, nor fracturing.

The study of stresses and strains in solid bodies that do not have cracks, voids or
discontinuities is known as continuum mechanics. Commonly, continuum
mechanics is referred as “Strength of Materials”, but such term is rather imprecise,

© Springer Nature Switzerland AG 2020
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because what is found in Strength of Materials textbooks are methods and formulas
meant for the design of structural components, such as beams and columns, among
others. Whereas the study of the mechanical behavior and the strengthening
mechanisms, is viewed in textbooks with titles such as: Mechanical Metallurgy,
Physical Metallurgy, or Materials Science.

Mechanical Behavior is a very important part of engineering, because any solid
component of a machine, a structure, a tool or any objet that will bear loads, should
be designed and fabricated to withstand stresses and strains produced by its use. For
instance, a gas tank must be able to resist the internal pressure without distortion or
rupture, a railroad track must resist the pass of trains without excessive deformation
and wear, the columns of a building must bear the dead weight plus earthquake and
wind loads without excessively bending or breaking. The mechanical behavior is
important in nature as well, a tree stem must support the weight of its branches,
leaves and fruits, the bones of a vertebrate animal must withstand the forces of
walking and jumping and so on. Even when the main function of a solid component
is not to withstand or transmit forces, they must have enough mechanical strength to
resist the forces that eventually may act over them; for example, the main function
of a conductor cable is to transport electricity, but if it does not have enough
strength it will not resist the bending, hanging and twisting loads that it experiences
in service and will fail. A glass window has the main function of separating the
internal environment of a building from the external one, while letting the light to
pass, but if it does not have mechanical strength, it will not resist the wind load and
small hits caused by tiny stones, bird crashes and so on. In addition to analyze the
stresses and strains in loaded bodies, the field of mechanical behavior has the task
of assessing the strength of materials through the mechanical tests such as the
tension, hardness and impact tests.

Another important aspect of the Mechanical Behavior is to understand and
control the strengthening mechanisms of the materials, both engineering and nat-
ural. This study is generally at a microscopic level, since the mechanisms of
deformation and strengthening are related to the crystalline structure, the crystal-
lographic defects and the microstructure. The field of deformation and strength-
ening mechanisms provides the basis for the design of new materials and
manufacturing processes that allow to obtain specific mechanical properties and the
optimal combinations of them.

Considering the above, the field comprising the Mechanical Behavior of mate-
rials has been divided into three parts which are:

• Continuum Mechanics: It is the study of the stress-strain relations, from the
macroscopic point of view, assuming the solid is a continuum and homogeneous
body.

• Deformation and Strengthening mechanisms: This deals with the study on how
plastic deformation takes place at an atomic and microstructural level and the
origins of the mechanical properties of materials.

• Fracture: Which is divided into two branches: Fracture Mechanics, which is the
study of the mechanical behavior of cracked bodies to determine the fracture

2 1 Stress
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resistance and the dynamics of crack propagation, from a macroscopic point of
view; and Fractography, which is the study of fracture surfaces and fracture
mechanisms, at both macro and microscopic levels.

In Continuum Mechanics, the distribution of stresses and strains of a loaded
solid body are determined as a function of geometry, points and directions of
applied loads and the mechanical properties determine whether or not the body will
withstand such stresses and strains. The main mechanical properties are: resistance
to stresses (yield and tensile strength), resistance to penetration (hardness), stiffness
(elastic modulus), maximum attainable deformation (ductility), resistance to strain
(resilience) and strain energy (toughness).

The study of deformation and strengthening mechanisms is aimed to learn about
the specific relations between the crystalline structure and microstructure with the
mechanical properties, whereas fracture mechanics is aimed to assess the perfor-
mance of cracked materials, which are the basis for the damage tolerance design
and structural integrity or fitness-for-service assessments.

The materials used for the manufacturing of components for structural and
mechanical applications in which the mechanical behavior is the fundamental
design criteria are known as engineering materials and they are classified according
to the Table 1.1.

Table 1.1 Classification of engineering materials

Class Characteristics Example

Ferrous
alloys

High mechanical strength, ductile, good
resistance to heat, good electrical
conductivity, high formability, high
impact and fracture resistance

Low, medium and high alloy steels,
cast irons

Nonferrous
alloys

High to medium mechanical strength,
ductile, mild resistance to heat, high
electrical conductivity, high formability,
mild impact and fracture resistance

Cooper, Aluminum, Nickel,
Titanium, Magnesium, Zinc and
their alloys

Polymers Low mechanical strength, elastic, poor
resistance to heat, electrical insulators,
high formability, high corrosion
resistance

Plastics (thermoset y
thermoplastic), elastomers, foams

Composites High mechanical strength, poor
resistance to heat, low density, high
formability

Polymer matrix reinforced with
fibers (glass, carbon, Kevlar),
reinforced concrete

Technical
ceramics

High wear strength, refractory, high
corrosion resistance, low impact and
fracture resistance

Alumina, magnesia, silica, tungsten
carbide

Glass High corrosion resistance, transparent,
poor impact resistance

Borosilicate, silica and soda glasses

Rocks High compression strength, refractory,
low impact and fracture resistance

Clay brick, granite, basalt

Bio-materials Low density, easy to work, low
mechanical strength, low cost

Wood, leather, bone, cotton, silk,
vegetable fibers

1.1 Mechanical Behavior and Engineering Materials 3
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1.2 Definition of Stress

The concept of stress was introduced by the French scientist and mathematician
Augustin Louis Cauchŷ in 1833, based on the Euler’s movement laws, Newtons’s
mechanics and the infinitesimal calculus. Cauchŷ was a remarkable mathematician,
catholic and a devoted royalist, that made numerous and important contributions to
virtually every branch of mathematics. He was member of the France Academy and
professor at Ecolé Polytechnique Parisien and the Paris Sorbone University, where
he studied the deformations in loaded solid bodies, introducing the concept of the
stress tensor. The next paragraphs describe the Cauchŷ’s stress tensor concept,
simplified to meet the objective of this book.

In order to define stress, first it is necessary to identify the types of forces that act
on a solid body, such forces are:

• Surface forces. They act throughout an external surface, such as loads, tractions
and pressure.

• Body Forces. They are exercised on the entirety of particles of a solid body,
such as: gravity, magnetism, inertia, thermal forces, etc.

The study of mechanical behavior only considers surface forces, that is to say,
load, tractions and pressure, since body forces do not significantly deform the
materials, unless they are extremely high.

To analyze the mechanical behavior of a solid body, it is necessary to simplify
the system, because materials are complex arrays of atoms, crystalline defects,
grains, second phases and heterogeneities. The simplifications consider that the
solid body is:

• Continuum. Matter occupies the entire volume and there are no voids or
interruptions.

• Homogeneous. The entire volume is made up of the same type of material.
• Isotropic. The properties are the same in any direction.

Figure 1.1 shows an idealized body under the action of an external force. If the
body remains static, the external force F is balanced by an internal reaction force Fr,
of the same magnitude, but opposite direction. Physically speaking the internal force
is the vector resultant of the many forces that act along the links of the particles that

Action

Reaction FFr

Internal area 
through which 
the force Fr acts

A

Static body

Fig. 1.1 Schematic representation of a static body under an external force

4 1 Stress
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make up the solid (atoms or molecules), thus the effect of the reaction is the
stretching, shortening or twisting these links. The magnitude of the internal reaction
in the solid, obviously depends on the magnitude of the applied force, but also on the
amount of links resisting such force. The number of particle’s links resisting these
internal forces is proportional to the cross section area A, so the magnitude of the
internal effect can be measured by the ratio F/A. If F/A is big, the effect is big and
vice versa.

The above concept is illustrated in Fig. 1.2, which shows how the magnitude of
the internal effect produced when an external force is applied on a static solid is
directly proportional to the applied force and inversely proportional to the
cross-section area. The bigger body has a cross area A1 = 10 and an applied force
F1 = 10, so it experiences a force unit per area equal to 1.0 force units per unit area.
The smaller body has a cross area A2 = 3, with an applied force F2 = 6, so it
withstands 2.0 force units per unit area, which is twice of what the bigger body is
withstanding, thus it experiences a greater effect.

The magnitude of the internal reaction calculated by the ratio F/A is the stress
and mathematically is defined by the equation:

r ¼ F
A

Therefore, stress is the magnitude of the internal reaction produced in a static
solid under the action of an external load or force. According to this definition,
stress has derived units, and the typical ones are shown in Table 1.2, along with the
conversion factors.

At this point, it is important to differentiate between pressure and stress since
they are calculated in a similar way and have the same units, so they are often
mistaken. Stress, as it has been stated, is the measure of the effect of an external
force a body; hence, the effect is internal and actuates over a cross-section area,
while pressure is a force evenly distributed on an external surface. Therefore, stress
is internal, and pressure is external. In order to visualize this, consider a hollow
cylinder containing a pressurized fluid as depicted in Fig. 1.3. Note that the pres-
sure is acting on an external surface, since the definition of “external” refers to a

A1 = 10

F1 = 10

A2 = 3

F2 = 6

Fig. 1.2 Force/area relation in a static solid under the action of a force
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location outside of the body’s volume, so even though the pressure is in the internal
side of the cylinder, it is applied outside the thickness of the cylinder. Now, it is
easy to visualize that the internal pressure will expand the cylinder, and this
expansion will generate internal forces in the circumferential direction, represented
by the dotted arrows in Fig. 1.3. These circumferential forces act across the shaded
area of Fig. 1.3, so it can be foreseen that the stress produced by the circumferential
force will have a different value from that of the pressure.

As stresses come from forces, and forces are vectors, they can be decomposed
into components; in order to avoid dealing with inclined vectors, Cauchŷ consid-
ered one component perpendicular to the cross-section area Fn and other compo-
nent Ft parallel to or tangential to it, as shown in Fig. 1.4. Since the effects of these
forces on the body are different, so are the stresses resulting from them.

Thus, the stress produced by a force normal to the cross-section area is called
normal and is designated by:

rN ¼ FN

A

Normal stresses, are divided into two types: when internal forces tend to separate
particles or stretch the body they are called tension stresses and are of positive sign
(+), and when the force brings particles close to each other, or shorten the body,

Table 1.2 Typical units of stress

System Units Common multiple

International Pascal (Pa = Nw/m2) MPa = 106 Pa

US customary psi (psi = lbf/plg2) ksi = 1000 psi

Metric Kgf/mm2 Kgf/cm2 = 100 kg/mm2

Conversion factors: 1 MPa = 10.5 kgf/cm2

1 kgf/cm2 = 41.22 psi
1 ksi = 6.895 MPa

Pressure

Stress

Fig. 1.3 Stress produced in a
hollow cylinder with internal
pressure
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they are compression stresses and are of negative sign (−). Such stresses are rep-
resented in a free body diagram, as shown in Fig. 1.5.

The stress produced by tangential forces is called shear stress and is designated by:

s ¼ FT

A

The sign of the shear stress is defined in terms of the direction of the bending
moment, thus, it is positive if it generates a counter clock moment and vice versa.

1.3 Mechanical Behavior in Uniaxial Tension

The uniaxial tension test is the universally accepted method to characterize the
mechanical behavior of engineering materials. Customary, the test is carried out in
accordance with the standard ASTM E8, which consists of stretching a test specimen
of uniform cross-section (round or rectangular) fixed with a set of grips attached to a
load frame. During the test, the specimen’s load and elongation are continu-
osly recorded, and the results are plotted in a Load vs. Elongation plot, which for a
typical metallic material, looks like the one shown in Fig. 1.6.

The Load-Elongation plot shows that, when a tensile load is applied, the
immediate effect is an elongation. Initially, if the load is removed, the test piece
recovers its initial shape and dimensions; then, it is said that the deformation is
elastic. After exceeding a specific load value, a permanent elongation occurs, and
then it is said that there is a plastic strain. It is important to bear in mind that the

External force
F

Internal area
AInternal resultant

F

FN

FT

Fig. 1.4 Normal component (FN) and Tangential component (FT) of the internal forces

Tension (+) Compression (-)

Fig. 1.5 Free body diagrams showing the types of normal stresses
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elastic deformation does no disappear during plastic deformation, but both are
added, therefore the behavior is elastic-plastic.

As mentioned before, the result of the uniaxial tension test is a Load vs.
Elongation curve, however, the load is divided by the area to give the engineering
stress (r), which is defined as:

r ¼ F
Ao

where F is the applied force and Ao is the initial cross-section area of the test
specimen. Similarly, the engineering deformation (e), is defined as:

e ¼ Dl
l0

where Dl is the elongation and lo is the initial length of the test specimen. As Ao
and lo are constants, the shape of the Load-Elongation curve does not change when
it is transformed into the Engineering Stress-Strain curve, as illustrated in Fig. 1.6.
By this way the main mechanical properties of engineering materials are determined
from this curve, as described in the next paragraphs.

The stress level at which plastic strain initiates is referred as yield strength,
represented by the symbol ro. The yield strength is a property of the material, and it
is of great importance in many engineering applications, since if a component gets
plastically deformed, usually it will not perform properly, constituting a failure; for
that reason, most engineering designs are done in such a way that the acting stresses
do not exceed the yield strength.

Load, F

Stress
 = F /A0

Elongation Δl, Strain = Δl / l0

Maximum strength, max

Yield 
strength

o

l0 A0
l

A

Δl = l - l0

Neck

Fracture

Ductility, f

Cup

Cone







Fig. 1.6 Schematic representation of the Load-Elongation and Stress-strain curves in uniaxial
tension of a typical engineering material
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The maximum point in the Stress-Strain curve is the tensile strength, identified by
the symbols rmax or ru and it is also a property of the material. It may be noticed that
after the tensile strength is reached, the Stress-Strain curve falls down; this is due to
the formation of a geometrical contraction of the test specimen, called neck. The
neck rapidly reduces the cross-section area and induces high local tensile stresses,
causing a reduction of the load necessary to continue straining the material. The neck
also indicates the initiation of the fracture process, which consists on the formation
of an internal crack by the nucleation, growth and coalescence of internal voids. The
internal crack reduces the cross-section area to a level where the remaining liga-
ment fails by ductile shear fracture, forming the typical cup and cone fracture.

The maximum elongation after failure is called ductility and is represented by the
symbol ef, usually it is a material property, but it is strongly influenced by
microstructural and environmental factors, so, often it is a non-mandatory or sec-
ondary requirement in material’s specifications.

For most engineering materials, the elastic part of the Stress-Strain curve linear,
as seen in Fig. 1.7. The ratio between stress and elastic strain is the Young’s
modulus, which is defined as:

E ¼ r
e

� �
Elastic

where r is the stress and e is the elastic elongation.
Bearing in mind, that e = Dl/ lo and r = F/Ao, it can be stated that:

r ¼ E
Dl
l0

� �
¼ F

A

Young’s Modulus

E = [ / ]Elastic



 



Fig. 1.7 Elastic portion of the stress-strain curve in uniaxial tension
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Therefore:

F ¼ AE
l0

� �
Dl

The term (AE/lo) is known as the Elastic Coefficient and it determines how rigid
or flexible a structure is. High values of the elastic coefficient will result in rigid
structures, less likely to deform; whereas low values of the elastic coefficient will
give flexible structures, easily deformed under load.

The application of the Elastic Coefficient is widespread in the design of, both,
mechanical and structural components, where it is desirable to set limits or controls
over elastic strain. The most frequent cases of elastic design are:

• Flexible or elastic components: those are that should feature fairly large elastic
strains or flexions, but not as much as to reach yield, as it is the case of helical
and leaf springs. In other words, flexible components are designed to have large
controlled elastic strains under the applied loads. According to the elastic
coefficient, this can be achieved by long lengths, small cross-section areas and
materials with a low Young’s modulus. The first two conditions make flexible
components long and slender.

• Rigid components: those are where an excessive elastic strain is adverse for their
performance, such as building structures, supports, gears and machine parts. In
these components, the magnitude of the elastic strain must be limited to a
minimum, so the elastic coefficient must be high. This can be attained by
widening the cross-section, shortening the length and by selecting high Young’s
modulus materials. The first two characteristics make rigid components short
and thick.

The following examples illustrate the use of the elastic coefficient.

Example 1 A leaf spring of length lo = 100 cm long and widthW 10 cm must have
an elastic vertical displacement d l < 10 cm under a load F = 1000 Nw (Approx.
100 kg). Determine the leaf spring thickness B if it is made of steel
(E = 211.4 GPa).

Solution A free body diagram of the problem is:
According to the force-elongation elastic formula: F = (AED l)/lo, thus:

lo = 100 cm

Δ l = 10 cm 

F/2 F/2 
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A ¼ F loð Þ=ðEDlÞ

However, A = W � B. Solving for B and substituting values:

B ¼ F loð Þ=ðEDl WÞ ¼ 1000Nwð Þ � 1mð Þ= 211:4� 109Nw=m2� �
0:1mð Þ � ð0:1mÞ

¼ 4:73� 10�3m ¼ 4:73mm

Example 2 An engineering design came out with a hollow square column of 10 cm
external width, 2.5 mm thickness and 4 m long, to support a load F = 490,500 Nw
(50 000 kg). The typical out-of-plumbness tolerance for building columns is 1 mm
per meter of height, neglecting curvature effects, it is a tensile strain of Dl/lo =
5.73 � 10−3. A novel engineer suggests to substitute steel by aluminum in order to
save weight. Is this a good idea? Assume that the Young’s modulus in compression
is identical to that in tension. Steel E = 211.4 � 109 Nw/m2; aluminum
E = 70.3 � 109 Nw/m2.

Solution According to the force-elongation elastic formula: F = (AED l) / lo, thus:

ðDl=loÞ ¼ F=ðAEÞ

A = 9.75 cm2 = 0.000975 m2. Substituting values for steel:

ðDl=loÞSteel ¼ 490 500Nwð Þ=ð0:000975m2 � 211:4� 109Nw=m2Þ ¼ 2:38� 10�3

Substituting values for aluminum:

ðDl=loÞAluminum ¼ 490 500Nwð Þ=ð0:000975m2 � 70:3� 109Nw=m2Þ
¼ 7:16� 10�3

Notice that the aluminum column has three times more elastic deformation than
steel and it will not meet the specification for out-of-plumbness. This is why alu-
minum is seldom used in load bearing structures such as buildings and bridges.

1.4 Mechanical Design by the Stress Definition

The main contribution of the stress concept is that the design of mechanical or
structural components can be straight forward, once the stress is known. Based on
the definition of stress, the design variables can be set as follows:

r ¼ F = A
Allowable stressð Þ Applied loadð Þ Cross section sizeð Þ

1.3 Mechanical Behavior in Uniaxial Tension 11
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According to this equation, any increment or decrement in one variable has to be
compensated by adjusting the other two variables. Thus, given a load F, which has
to be supported by the component and knowing the material’s mechanical resis-
tance (for example, the yield strength), the cross-section area A that the component
needs to have in order to withstand the stress can be calculated. If both A and F are
set, then an appropriate material can be selected, being that which strength is greater
than the calculated stress, and finally if the material’s strength and A are given, then
the maximum applied load can be established. As mentioned before, in many
designs, the calculated stress should be below the yield strength, so a safety factor
less than 1.0 is applied to the material’s strength. This process is presented in
Fig. 1.8.

The fraction of the yield strength is the maximum allowable stress, called design
stress. The magnitude of the difference between the design stress and the material’s
strength is the safety factor (SF), which value depends on several factors, being the
most important: the load uncertainties, the presence of defects that reduce the
strength and the severity of failure consequences.

Define form and dimensions:
A

Define maximum load: 
F

Calculate the stress:
Calc

Select material:
Mat

Mat x SF calc

Design

Is there another 
material?

Increase cross 
section area

Limit load?

Yes
Yes

Yes

No

No

No

  



≤

Fig. 1.8 Flow chart of mechanical design based on the definition of stress
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Example A cylindrical bar has to support a load of 1000 kg. Due to design limi-
tations, the diameter cannot exceed 10 mm. It the fabrication material has a yield
strength of 3500 kg/cm2, what is the safety factor?

Solution

rCalc ¼ F=A ¼ F=ðpR2Þ ¼ 1000 kgð Þ=ðp 0:5ð Þ2cm2Þ ¼ 1273 kg/cm2

SF ¼ rCalc=rMat ¼ 0:363

Notice that in the previous example SF is less than 1.0, because it is applied to
the materials strength, however, many design codes use safety factors greater than
1.0, so in such cases it is applied to the applied loads or calculated stresses.

1.5 The Stress Tensor

So far, the stress has been calculated by dividing the total internal reaction force by
the cross section area, however, internal force is the resultant of the vectorial sum of
many force components acting across the unit area elements that compose the total
area. If the body is a continuum, this concept leads to the idea that stress may exist
in a point. To demonstrate this, consider an area element ai of very small size,
which is under the action of an internal force component fi, therefore:

A ¼ Rai

F ¼ Rfi

If the equity ai / fi = F / A, is true, then it is said that the stress is uniform.
Furthermore, if the body is a continuum, the following limit exists:

limai!0

fi
ai

And then, the stress can be determined as:

r ¼ dF
dA

Since dF and dA represent differential quantities (a differential is a value close to
zero, but never becomes zero), the previous equation represents the stress in a point,
and therefore:

1.4 Mechanical Design by the Stress Definition 13
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F ¼ Z
rdA

Cauchŷ applied this concept to a cube shaped element of differential volume
placed in a coordinated Cartesian system (x, y, z), where the forces are decomposed
into three components, each one parallel to the directions x, y and z on each face of
the cube, so each face of the cube will have one normal component and two
tangential ones. Graphically, the stress components on each cube face would be as
shown in Fig. 1.9. The opposite force components that balance the system are not
taken into consideration because once the acting components are defined, the
opposite are automatically defined, so there is no need to mathematically describe
twice as much vectors.

Notice that the following index notation has been introduced, in order to identify
the stress components:

rij is a stress component;

where:

i is the cube’s face
j is the direction of the force.

As seen in Fig. 1.9 there are nine stress components, three per cube face, and
they define the total number of reactions in a static body subject to external loads.
Since each component is a vector, by writing the nine components in matrix form,
the stress tensor is obtained.

y

z

x

σzz

σyy

σxx

σzy

σxz

σzx

σxy
 σyx

σyz

Fig. 1.9 Stress components
in a volume element in an
orthogonal coordinated
system
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r ¼
rxx sxy sxz
syx ryy syz
szx szy rzz

0
@

1
A

The stress tensor is made up of three normal components (rxx, ryy and rzz) and
six shear components. Now, the shear components also create a momentum that has
to be balanced as well in order to keep static balance. To determine the magnitude
of the momentum, consider a two dimensional body under the action of shear
stresses, as shown in Fig. 1.10.

In static conditions, the in-plane momentum balance is:

MyxþMxy ¼ 0

where M is the momentum, defined by:

Myx ¼ ryxdxdzðdyÞ

In the latter equation, dxdx is the area where force actuates and dy is the leverage
length. Similarly:

Mxy ¼ rxydydzðdxÞ

Which leads to:

rxy ¼ ryx

In general, rij = rji, therefore, it is said that the stress tensor is symmetric.
Symmetry reduces the stress tensor to six independent components.

 x

y

σyx

σxy

-σxy

-σyx

Fig. 1.10 Shear stress
components acting on the face
of a volume element
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To determine the sign of the stress components the following rule applies:

A force inðþ Þdirection; acting on aðþ Þface ¼ þ stress

A force inð�Þdirection; acting on að�Þface ¼ þ stress

A force inðþ Þdirection; acting on að�Þface ¼ �stress

A force inð�Þdirection; acting on aðþ Þface ¼ �stress

The positive faces and directions are those to the right, upwards and donwards
and the negative are to the left, backwards and downwards. Figure 1.11 shows
examples of this rule.

The combination of non-zero stress components in the stress tensor define the stress
state. The most common stress states are shown in Table 1.3. Notice that in this table,
both zero and non-zero components of stress have been written down, however the
common practice is to eliminate the rows and columns that have all zero values.

A simple suggested methodology to qualitatively determine the stress state is as
follows:

1. Draw a free body diagram of the component with the applied loads as vectors
(arrows with magnitude, direction and point of application), indicating the
supports and displacement restrictions.

2. Set a coordinated system of orthogonal axes (x, y, z) at the body’s center of
gravity, preferably with one of the axes aligned with the body’s symmetry axe or
parallel to the direction of the main applied load.

3. Draw a cube at the origin of the coordinated system with its edges aligned to the
axes.

4. Identify internal reaction forces on the cube faces as vectors of the same
magnitude and opposite direction to the external forces.

5. Identify the normal and shear components of the stresses that are generated on
the cube’s faces, applying the index notation. Bear in mind that the first index is
the face where the force actuates and the second index is the direction of the
force and apply the stress symbol rule.

6. Write down in matrix form the no-zero stress components, the rows are the faces
and the columns are the directions; this matrix is the state of stresses.

y

x

σyy  (+) y

x

σyy  (- )
Fig. 1.11 Free body
diagrams showing tension and
compression stresses
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The following examples illustrate the above procedure:

Example 1 A square bar supports a tensile load of 500 kg. If the cross section is
1 cm2, determine the stress tensor at a point on the center of the bar.

Solution The free body diagram is:

x

z

y

A = 1 cm2

P = 500 kg

Table 1.3 Common stress states

Name Stress tensor Example

Uniaxial tension
r ¼

rxx 0 0
0 0 0
0 0 0

0
@

1
A A vertical bar with a hanging weight

Simple compression
r ¼

�rxx 0 0
0 0 0
0 0 0

0
@

1
A Open forging

Biaxial tension
r ¼

rxx 0 0
0 ryy 0
0 0 0

0
@

1
A Hollow cylinder under internal pressure

Pure torsion
r ¼

0 sxy 0
sxy 0 0
0 0 0

0
@

1
A Transmission axle

Tension–
compression r ¼

rxx 0 0
0 �ryy 0
0 0 0

0
@

1
A Wire drawing

Plane stress
r ¼

rxx sxy 0
sxy ryy 0
0 0 0

0
@

1
A Thin plates and free surfaces

Triaxial tension
r ¼

rxx 0 0
0 ryy 0
0 0 rzz

0
@

1
A Stress concentrators and plane strain

General triaxial
stress r ¼

rxx sxy sxz
sxy ryy syz
sxz syz rzz

0
@

1
A General case (complex geometry and

loads)

1.5 The Stress Tensor 17
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The reactions are:

rxx ¼ Px=Ax ¼ 500 kg=1 cm2 ¼ 500Kg=cm2

ryy ¼ Py=Ay ¼ 0

rzz ¼ Pz=Az ¼ 0

The stress state is:

r ¼
500 0 0
0 0 0
0 0 0

0
@

1
Akg=cm2

Example 2 A thin walled cylinder of length L, wall thickness t = 1 cm, and internal
diameter D = 50 cm, is under internal pressure p = 50 kg/cm2. Determine the
stress state and the acting stresses.

Solution The free body diagram for the circumferential direction y is shown in the
figure below. Notice that the internal pressure pushes the half cylinder with a force
Fy= pAc; by applying the Pascal’s principle, Ac can be the mid-section area of the
cylinder, which is Ac = DL. Therefore, the force induced by the pressure is
Fy = pDL. Now this force is balanced by two identical forces in each side of the
half-cylinder of magnitude Fy/2, which acts over a cross-section area equal to tL.

p

D

Fy / 2 Fy / 2

t

The stress, according to the reactions described above is:

ryy ¼ Fy

2Ay
¼ pDL

2tL
¼ pD

2t

The free body diagram for the longitudinal direction x is shown in thefigure below.
Notice that the internal pressure expands the cylinder with a force Fx = p(¼pD2); the
balancing force acts over the annulus cross-section area equal to¼p [(D + 2t)2 –D2].
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p

Fx

Fx

D

t

The stress, according to the reactions described above (neglecting the term 4t2) is:

ryy ¼ Fx

Ax
¼

1
4 ppD

2

1
4 p Dþ 2tð Þ2�D2

h i ¼ pD
4t

According to the chosen orientation of the coordinate system, the stress tensor is:

r ¼ rxx 0
0 ryy

� �

And the stresses are:

rxx ¼ 50 kg/cm2� �
50 cmð Þ=2 1 cmð Þ ¼ 1250 kg/cm2

ryy ¼ 50 kg/cm2� �
50 cmð Þ=4 1 cmð Þ ¼ 625 kg/cm2

r ¼ 625 0

0 1250

� �
kg/cm2

Deviatoric and hydrostatic component of stress tensor. Many mechanical
behavior problems require the subtraction of the hydrostatic components of the
stress tensor, because they do not contribute to plastic strain. The hydrostatic
component is implicit within the stress tensor, in other words, any stress state can be
broken down into a hydrostatic state, and the remaining state is called deviatoric.
Mathematically the deviatoric component is:

rC ¼ r� rH

where rH is the hydrostatic stress and rC is the deviatoric component of the stress.

1.5 The Stress Tensor 19
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The hydrostatic component is calculated by:

rH ¼ rxx þ ryy þ rzz
3

Therefore, the hydrostatic stress state is:

rH ¼
rH 0 0
0 rH 0
0 0 rH

0
@

1
A

Subtracting the hydrostatic stress, the remaining stress tensor is obtained:

rC ¼ r� rH ¼
rxx sxy sxz
sxy ryy syz
sxz syz rzz

0
B@

1
CA�

rH 0 0

0 rH 0

0 0 rH

0
B@

1
CA

¼

2rxx�ryy�rzz
3 sxy syz

sxy
2ryy�rxx�rzz

3 syz

sxz syz
2rzz�rxx�ryy

3

0
BB@

1
CCA

1.6 Non-uniform Stress Distribution

So far, it has been assumed that stress is uniform over the cross-section area, which
fortunately, is quite common, but there are also many cases in which the stress is
not uniform, this means that it varies along the cross-section of the body.
Calculating non-uniform stresses is a complex process that depends on the geom-
etry, the location of the load application points and, obviously the direction of the
applied loads. Many times it is not possible to analytically calculate non-uniform
stresses, so it is necessary to apply numerical methods or to measure them by
experimental techniques. A few cases of the analytical determination of the stress
distribution inside a solid can be found in Elasticity and Strength of Materials
textbooks; a classic example is the cantilever beam, whose stress analysis is
described as follows:

Consider a straight beam with a rectangular cross-section, fixed at one end and
with a load F in the other end, as shown in Fig. 1.12. Intuitively, it may be
determined that the load will bend the beam, inducing a tension stress on the top of
the beam and a compression stress in the lower side. This causes a change from
positive to negative in the stress sign, therefore there should be a plane where the
stress is zero, this is called neutral plane.
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The elongation strain on the top fiber of the beam can be calculated from lengths
AB, located on the neutral plane and CD located on a fiber a distance y from the
neutral plane. The strain e is:

e ¼ CD� AB
AB

¼ Rþ yð Þh� Rh
Rh

¼ y
R

where h is the angular displacement in radians. If the strain is elastic:

e ¼ r
E
¼ y

R

Therefore:

r ¼ E
R
y

Taking a slice of material from the cross-section, with thickness dy and area dA
at a distance y from the neutral plane, the force F acting over the slice can be
expressed by the following equation:

F ¼ rdA ¼ E
R
ydA

This produces a moment of force in the neutral plane equal to:

Fy ¼ E
R
y2dA

Now, the total moment M in the cross-section is:

M ¼ E
R

Z
y2dA

R

y

A B

C D

F

y

A B

C D

+

-

Neutral 
plane

L

H





Fig. 1.12 Free body model of a rectangular cantilever beam
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Notice that E and R come out of the integral because they are constants. The
previous integral is termed momentum of inertia and is represented by the symbol I,
therefore:

M ¼ E
R
I

Bearing in mind that: r
E ¼ y

R

It can be written that: r ¼ M
I y

Taking dA = Bdy, the momentum of inertia of the rectangular beam is:

I ¼
ZH=2

�H=2

y2Bdy ¼ B
y3

3

� 	H=2

�H=2
¼ BH3

12

If M = FL and substituting I, the equation for stress at a y distance above the
neutral plane is:

r ¼ 12FL
BH3 y

Notice that above the neutral plane, y is positive, so the stress is tensile, and
below the neutral plane y is negative and the stress is compressive.

The maximum stress in the rectangular beam can be obtained by substituting
y = H/2. The result is:

rm�ax ¼ 12FL
BH3

H
2

� �
¼ 6FL

BH2

1.7 Stress Transformation and the Mohr’s Circle

The state of stresses not only depends on the loads and body geometry, but also on
the orientation of the coordinated axes that are used as a reference to define the
stresses. Since coordinate system orientation is arbitrarily selected, the derived
stress state shows the components for that particular orientation, but their values in
any other direction are unknown. This means that for the same body with the same
loads, the stress state is different for each orientation of the coordinate system, in a
similar way as the shape of the shadow of an object changes depending on the angle
of the light source. For instance, if a cylinder is viewed on the front, its shadow will
look like a circle, but if it is viewed on its side, it will look like a rectangle.

The determination of the stress components at different orientations is extremely
useful, because in many instances is necessary to determine the values and
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orientations of the maximum normal and shear stress, or to determine the stress
values at a particular orientation. One example is a cylindrical bar in pure torsion.
Obviously, if the x axis of coordinate system is placed along the length of the bar,
the stress state is pure shear, and the normal stress components are zero, as shown in
Fig. 1.13. The question that arises is: Are there tension and compression stresses as
well? And, if yes, what are their values and directions? The following analysis
provides the answer.

The schemes of Fig. 1.14 show a body under tensile load, but the coordinate
system of the right is inclined with respect to the left figure. In the left figure the
x axis is parallel to the applied force P, so the only reaction force produces the stress
component rxx, but if the cross-section plane is inclined, the internal reaction force
breaks down into two tension components and two shear components, because the
cube faces are now inclined, as shown in Fig. 1.14.

Thus, by changing the orientation of the coordinate system, the stress state
changes, because different components can be seen but the resultant force should be
the same. In the same way, if the coordinated axes in Fig. 1.13 are inclined 45

x

y
xy = 0 0

Fig. 1.13 Stress state of a cylindrical bar in pure torsion. The question is: Are there tension and
compression stress as well? And what are their values and directions?

F

x

z

y

xx

 = xx

F

x

z

y

xx

 = 

yyxy









Fig. 1.14 Schematic representation of the stress transformation due to the inclination of the
coordinated system. In the left figure, the stress state is uniaxial tension, but when the plane is
inclined, the state is plane stress, as seen in the left figure
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degrees, it can be seen that a tensile stress and a compressive stress components
appear, along with a pair of shear stresses of the same magnitude. The method to
calculate a stress state from an orientation to another is called stress transformation.

The stress transformation equations in two dimensions, were developed by
Cauchŷ and are:

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

� �
cos2hþ sxysin2h

ry0y0 ¼ rxx þ ryy
2

� rxx � ryy
2

� �
cos2hþ sxysin2h

sx0y0 ¼ rxx � ryy
2

� �
sin2hþ sxycos2h

where the superscript (′) indicates the direction of the planes inclined h degrees.
Notice that:

rxx þ ryy ¼ rx0x0 þ ry0y0

This is known as First Stress Invariant and it applies for three dimensions too.
In 1882, the German civil engineer Christian Otto Mohr published a graphical

method to determine the stresses components in directions different from the used to
determine an original stress state. Such method is known as “The Mohr’s Circle”
and is described next.

By elevating to square power and summing the stress transformation equations
for plane stress, the following equation is obtained:

rx0x0 þ rxx þ ryy
2

� �2
þ s2x0y0 ¼

rxx � ryy
2

� �2
þ s2xy

Notice that this is the equation of a circle: (x + c)2 + y2 = r2, when plotted in a
coordinated system where the horizontal axis (x) is the normal stress and the vertical
axis (y) is the shear stress. The center (c) is the average stress, given by (rxx + ryy)/
2, and the circle’s radius (r) is the right hand side term of the above equation, which
correspond to the maximum shear stress. The coordinate points on the circle’s
perimeter are the stresses component when the plane is rotated by 2h degrees.

The guidelines to construct the Mohr’s Circle are:

1. Draw a set of coordinated axes. The abscissas (horizontal axe) are the normal
stresses and the ordinates (vertical axe) are the shear stresses. The scale of both
axes has to be the same. The positive normal stresses are plotted to the right and
the positive shear stresses are plotted downward.

2. Locate the first point of coordinates (rxx, sxy). To locate the second point, the
sign of the shear stress is changed (ryy, −sxy).

3. The two points are joined by a straight line, which the diameter of the circle. The
diameter crosscut the normal stress axe at the average normal stress, which is the
center of the circle.
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4. Draw a circle, with a ratio equal to half the length of the diameter.
5. The circle’s ratio is the maximum shear stress (smax).
6. The points at the intersection of the circle with the normal stress axe correspond

to the orientations where the shear stress is zero; these stresses are called
principal stresses.

7. It is important to bear in mind that the rotations in the Mohr’s Circle are twice as
much their value in the real space (2h).

Figure 1.15 shows a Mohr’s Circle constructed by this method. The stress
transformation properties derived from the Mohr’s Circle are:

(a) The maximum shear stress is always at 90° (45° in real space), counter
clockwise from the maximum principal stress.

(b) The minimum principal stress is always at 180° (90° in real space) from the
maximum principal stress.

(c) The maximum shear stress is equal to the maximum principal stress minus the
minimum principal stress, divided by two.

Example Be the stress tensor: r ¼ 10 8
8 2

� �

The initial points of the circle are (10, 8) and (2, −8), the center is at (10 + 2) /
2 = 6 us, the circle is.

xy

- xy

xx

+-

+

-
ave = ½ ( xx + xx) 

σ

σ



 yy

τ

τ

τ

τFig. 1.15 Schematic
representation of the
construction of the Mohr’s
Circle
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8

-8

10

+σ-σ

+τ

-τ

6
2

The ratio is the maximum shear stress and can be calculated using the
Pythagoras theorem.

Thus, the maximum shear stress is sxy= 8.944
The angle h is given by:

h ¼ 1
2
tan�1 sxy

rxx � rave

� �
¼ 1

2
tan�1 8

4

� �
¼ 31:7

�

The maximum principal stress is located by adding one ratio to the center, that is:

rmax ¼ rave þ r ¼ 6þ 8:944 ¼ 14:944

And the minimum principal stress is the center minus one ratio:

rmin ¼ rave � r ¼ 6� 8:944 ¼ �2:944
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The next figure shows the physical interpretation of this result:

Another interesting application of the Mohr’s Circle is to visualize the effect of
the addition of a new stress component. For example, normally a concrete column is
under uniaxial compression, but in an earthquake, shear stresses are introduced. The
effect is shown in the Mohr’s Circle of Fig. 1.16, where it may be seen that the
addition of a shear stress makes a tensile stress to appear and the compression stress
increases, thus the column behaves as if it were carrying more weight and with a
new tension stress. If the earthquake is very strong, the column may buckle due to
the high compressive stress and the tension stress may be high enough to cause
fractures, since concrete does not resist tension stresses.

Three-Dimension Mohr Circle: The three-dimension Mohr Circle can be easily
constructed if the principal stresses are known. The construction consists of
drawing a circle between each pair of principal stress values, obtaining three circles,
as shown in Fig. 1.17. The shaded region in the larger circle is where the stress
components are located when rotating the coordinate axes, but it is not possible to
locate them graphically, thus the three-dimension Mohr Circle is used only to
observe the behavior of the principal stresses and the maximum shear stress.

As it was explained earlier, the principal stresses correspond to a set of orien-
tations called principal directions, additionally, it is known that the principal
stresses and the original stress matrix correspond to the same stress content in a

Mohr’s circle under 
normal load

+-

+

-
Shear stress introduced by 
the earthquake

New tension stress

Increased compression 
stress

Mohr’s circle under 
earthquake

 

τ

τ

Fig. 1.16 Effect of the introduction of a shear stress in a column working in compression
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body, therefore, the value of the stress tensor has to be the same, regardless the
orientation. Mathematically, the determinant represents a tensor value, thus, the
following equation can be written:

det rpj j � det rj j ¼ det rp � rj j ¼ 0

where rP is the principal stress tensor and r is the original stress tensor. The
determinant is:

det
r� rxx �sxy �sxz
�sxy r� ryy �syz
�sxz �syz r� rzz














 ¼ 0

The calculation of this determinant results in the following cubic equation:

r3 � rxx þ ryy þ rzz
� �

r2 þ rxx þ ryy þ ryyrzz þ rzzrxx � s2xy � s2yz

� �
r

� rxxryyrzz þ sxysyzsxz � rxxs
2
yz � ryys

2
xz � rzzs

2
xy ¼ 0

The three roots of this equation are the principal stresses. It is interesting to
mention that the coefficients of this equation are the three invariants of the stress
tensor, and their value is constant, regardless of the orientation.

Examples Construct a Mohr Circle for each case:

r ¼
10 0 0
0 20 0
0 0 �10

0
@

1
A

1 2 3 

max

+-

-

+

    

τ

τ

τ
Fig. 1.17 Mohr Circle in
three dimensions. Notice that
the maximum shear stress is
half-way between the r1 and
r3
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r ¼
10 0 0
0 20 0
0 0 0

0
@

1
A

r ¼
10 0 0
0 20 0
0 0 20

0
@

1
A
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r ¼
10 0 0
0 10 0
0 0 10

0
@

1
A

Example Find the principal stresses of the following state of stress:

r ¼
10 0 0
0 4 0
0 0 �6

0
@

1
A

Applying the determinant equation:

det
r� 10 �2 0
�2 r� 4 0
0 0 rþ 6














 ¼ 0

Developing:

ðrþ 6Þ½ðr� 10Þðr� 4Þ � ð2Þð2Þ� ¼ 0
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The first root is (r +6) = 6; rP = −6. The other part of the equation is:

ðr� 10Þ r� 4ð Þ � ð2Þ2 ¼ r2 � 14rþ 36 ¼ 0

Solving the quadratic equation:

rP ¼
� �14ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�14ð Þ2�4 1ð Þ 36ð Þ2

q
2

The principal stresses are:

r1 ¼ 10:6

r2 ¼ 3:4

r3 ¼ �6:0

Three-Dimension Stress Transformation. The transformation of the stress
tensor in three dimensions is done by the directing cosines method, which consists
of the following: Determine the angles between the original coordinated system xyz
and the new orientation x′ y′ z′, as shown in Fig. 1.18.

The director cosines matrix is:

aij ¼
coshx0x coshx0y coshx0z
coshy0x coshy0y coshy0z
coshz0x coshz0y coshz0z

0
@

1
A

The transformation equation is:

ri0j0 ¼ ai0j r aj i0

z

x x'

y’z

z’y

z’z

y’y

z’x

x’x

x’y

y’x

x’z

y'

y

z'

θ

θ
θ

θ

θ

θ

θ

θ

θ

Fig. 1.18 Angles to obtain
director cosines
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The following example illustrate the use of this equation:

Example A coordinate system is rotated 30° with respect to the z axe, as shown in
the figure below:

z , z ´

y

x

y ´

x ´

3 0 o

30 o

The stress tensor is:

r ¼
10 5 0
5 �10 2
0 2 5

0
@

1
A

The directing cosines matrix is:

a ¼
cos 30 cos 60 cos 90
cos 120 cos 30 cos 90
cos 90 cos 90 cos 0

0
@

1
A ¼

0:866 0:5 0
�0:5 0:866 0
0 0 1

0
@

1
A

The next step is to multiply the cosine matrixes, but it should be taken into
consideration that matrix multiplication is not commutative, so the order of matrices
must be the same when doing the multiplication.

The first multiplication is:

a r ¼
0:866 0:5 0
�0:5 0:866 0
0 0 1

0
@

1
A �

10 5 0
5 �10 2
0 2 5

0
@

1
A ¼

11:16 �0:67 1
�0:67 �11:66 1:732

0 2 5

0
@

1
A

And the second multiplication is:

a r aT ¼
11:16 �0:67 1

�0:67 �11:66 1:732

0 2 5

0
BB@

1
CCA �

0:866 �0:5 0

0:5 0:866 0

0 0 1

0
BB@

1
CCA

¼
9:32 �6:16 1

�6:16 �9:32 1:73

1 1:73 5

0
BB@

1
CCA
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1.8 Yield Criteria

Up to this point, it is known that when a material reaches its yield strength in
uniaxial tension, the plastic strain it will begin, however, the common condition is
that the material is under a combined stresses state, different from uniaxial tension,
so it is necessary to determine under what combination of stresses the material will
yield. The equation to determine if there is yield under a combined state of stress is
called yield criterion. The yield criterion has to be a stress tensor invariant because
it should not depend on the orientation, additionally, it must discount the hydro-
static stress, because they do not produce plastic deformation. The two most
widespread yield criteria are Tresca’s and Von Mises’s, which are described as
follows:

Tresca’s criterion: Henri Edouard Tresca was a mechanical engineer and
professor of the Conservatoire des Arts et Meties of France. His studies on plasticity
led him to develop the first yield criterion in 1860. He was an outstanding engineer,
who created the Pattern Metro and his name is among those who contributed to the
edification of the Eiffel Tower.

Tresca’s criterion, also known as maximum shear stress, states that plastic strain
initiates when the maximum shear stress exceeds a critical value. For any state of
stress, the maximum shear stress is given by the difference between the principal
maximum and the minimum principal stresses, as the shown by the Mohr’s Circle,
thus:

sm�ax ¼ ðr1 � r3Þ=2 ¼ k

To find the value of k, the previous equation is applied to uniaxial tension, where
the maximum principal stress is:

r1 ¼ r0

The other principal stresses are:

r2 ¼ r3 ¼ 0

Then:

sm�axr0=2 ¼ k

Therefore, Tresca’s criterion equation is:

r1 � r3 ¼ r0

Von Mises’ criterion: Richard Von Mises was an outstanding
Austro-Hungarian scientist, graduated from The University of Vienna. He was
director of the Mathematics Institute at the University of Berlin. Due to his Jewish
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background, he had to immigrate to Turkey in 1933 and then to The United States,
where he became professor at Harvard University. In 1913, he developed the dis-
tortion energy theory, which goes by his name.

The von Mises criterion states that yielding initiates when the value of the
effective stress, given by the second stress tensor invariant, exceeds a critical value
given by k2. The effective stress, in terms of the principal stresses, is given by:

1=6½ðr1 � r2Þ2 þ r2 � r3ð Þ2 þ r3 � r1ð Þ2� ¼ k2

Once again, k is calculated from the uniaxial tension case, where the principal
stresses are:

r1 ¼ r0

r2 ¼ r3 ¼ 0

Substituting:

r0 ¼
ffiffiffi
3

p
k

Which leads to the von Mises’s criterion equation:

r0 ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r2ð Þ2 þ r2 � r3ð Þ2 þ r3 � r1ð Þ2

q

The von Mises’s criterion can also be expressed in terms of the stress compo-
nents as:

r0 ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryy
� �2 þ rxx � rzzð Þ2 þ ryy � rzz

� �2 þ 6 s2xy þ s2xz þ s2yz

� �r

In order to verify the accuracy of the yield criteria, the combined stress tests are
used, being the most common the tension-torsion, which consists in stretching and
twisting a cylindrical bar.

The main stresses are:

r1 ¼ rxx=2þðr2
xx=4þ s2xyÞ1=2

r2 ¼ 0

r3 ¼ rxx=2� ðr2
xx=4þ s2xyÞ1=2
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According to the Tresca criterion:

ðrxx=r0Þ2 þ 4ðsxy=r0Þ2 ¼ 1

According to the von Mises criterion:

ðrxx=r0Þ2 þ 3ðsxy=r0Þ2 ¼ 1

By plotting and comparing the above equations with experimental data, the
results, schematically shown in Fig. 1.19, show that von Mises’s criterion is more
accurate than Tresca’s, but the Tresca’s criterion gives conservative values, that is,
it predicts that yielding will occur before it actually does, which provides a safety
margin.

Yield criteria are of great practical relevance, since they allow to know whether a
material will plastically deform under a combination of stresses, by using only the
yield strength in uniaxial tension as the only experimental required value, which, by
the way is broadly available. The yield criteria also allows to determine the yield
strength required to prevent plastic deformation. The most important applications of
the yield criteria are:

1. In design: they are used to determine the maximum allowable stresses to pre-
vent plastic distortion, to select the proper material, or to set a specification for
the yield strength.

2. In forming processes: such as rolling, forging, extrusion, stamping, etcetera,
where yield criteria are applied in order to determine the required work-loads,
and to select the most effective combinations of stresses.

The following examples illustrate some of these applications.

Example 1 A cylindrical pressure vessel has to withstand a pressure p = 50 kg/
cm2. A sheet of t = 5 mm thickness is available for fabrication. If the diameter is
D = 100 cm. What should be the minimum yield strength of the fabrication
material?

Solution The principal stresses in the vessel are:

r1 ¼ pD
2t

r2 ¼ 1=2r1

r3 ¼ 0
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Applying the Tresca criterion:

r1 ¼ ro

Therefore:

r0 ¼ 50 kg/cm2 � 100 cm
2� 0:5 cm

¼ 5000 kg/cm2

By the Von Mises criterion:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 � r1r2

2
q

But because r2 = ½ r1:

ro ¼
ffiffiffi
3

p

2
r1 ¼

ffiffiffi
3

p

2
pD
2t

¼ 0:866� 5000
kg
cm2 ¼ 4330

kg
cm2

Notice that the von Mises criterion requires a lower yield strength.

Example 2 If in the previous problem a steel plate with r0 = 3500 kg/cm2 is used.
What should be the minimum thickness to prevent plastic deformation?

Solution The Tresca equation for yield of a cylindrical vessel is:

r1 ¼ pD
2t

Solving for t:

t ¼ pD
2r0

Substituting data, the required thickness by Tresca is: 7.14 mm.
The Tresca equation for yield of a cylindrical vessel is:

ro ¼
ffiffiffi
3

p

4
pD
t

Solving for t:

t ¼
ffiffiffi
3

p

4
pD
ro
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Substituting data, the required thickness by von Mises is: 6.18 mm.

Example 3 A screwdriver should withstand a compressive load of p = 180 lbf, a
torque T = 3 lb-in. One design has a. diameter d = ¼ in. Determine the minimum
required yield strength, considering a safety factor of 2.0.

Solution The free body diagram of the screw driver is shown in the next figure.
Notice that the stress state is compression and shear.

σxx= -P/A= -4P/π D2

τxy=16T/πD3

load P 

Torque 

The von Mises’s criterion is used, to avoid calculating the principal stresses. For
compression-torsion, the von Mises equation is reduced to:

r0 ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2xx þ 6s2xy

2
q

rxx ¼ � 4x180lbf

p 0:25ð Þ2in2 ¼ 3667 psi

sxy ¼ 16x8lb� in

p 0:25ð Þ3in3 ¼ 6607 psi

Substituting data, the result is 12,016 psi, but since a safety factor od 2.0 is
applied, the minimum required yield strength is: 24,032 psi.

As mentioned before, one use of the yield criteria it to analyze the stress states
that give the greater strength or under which a material can be easily deformed. The
yield maps are graphic representations of the yield criteria in plane stress, that allow
to locate a specific combination of principal stress an visually determine if the
deformation is going to be plastic or elastic.

Plane stress yield maps are useful for analyzing stress combinations in cases
such as:

• Thin sheets and free surfaces
• Tension-torsion combinations
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• Tension-compression combinations
• Thin walled pressure vessels and pipes.

In plane stress, there is always a principal stress equal to zero, so to avoid
confusion by the notation convention that states that the maximum principal stress
is represented by r1, the intermediate as r2 and the minimum or most negative as
r3, the principal stresses directions in the yield map are represented as x and y. To
construct a Von Mises yield map, it is necessary to write the equation for two
dimensions (elevated to the square).

r2
1 þr2

2 � r1r2 ¼ r2
0

This equation is equivalent to:

x2 þ y2 � xy ¼ c2

Which is the equation of an inclined ellipse, that is depicted in Fig. 1.20. Thus,
every stress combination falling within the ellipse does not cause yield, while the
points out of it mean plastic deformation.

/σ0

/σσ 0
1.0

1/4

1/3 Von Mises

Tresca Experimental 
data 

τFig. 1.19 Experimental data
of a yield tension-torsion
test as compared to predicted
values of the Tresca and Von
Mises yield criteria

x

y

-x

-y

0 

0 

- 0 

- 0 

Elastic

Plastic








Fig. 1.20 Von Mises yield
map for plane stress
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The plane stress yield map for Tresca’s criterion is shown in Fig. 1.21. It con-
sists of a series of straight lines whose trajectory depends on the quadrant where the
stress combination defines which direction has the maximum and minimum prin-
cipal stresses. By overlapping both maps, the yield criteria can be compared, as
shown in Fig. 1.22. In this figure it can be seen that for uniaxial and biaxial tension,
both criteria coincide, while in a thin walled pressurized cylinder, the von Mises
criterion predicts yield at a value of r1 = 1.154 r0, whereas Tresca predicts that
yield will occur when r1 = ro. The tension-compression load, located in the sec-
ond and fourth quadrants, has the shortest load trajectory. According to Tresca,
yielding occurs when r1 = 0.5ro, while Von Mises predicts that r1 = 0.577ro.

x-x

-y

y

σ0
-σ0

-σ0

σ0

σy = σ0

σx = σ0

σx -σy = σ0

σy -σx = σ0

-σy = σ0

-σx = σ0

σx > σy

σy > σx

σx <σy

σx > σy

Cuadrant 2

σy = σ1 

Cuadrant 1

σx = σ1

Cuadrant 3

σ1 = 01 

Cuadrant 4

σx = σ1 

σ1

Fig. 1.21 Tresca yield map for plane stress
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Fig. 1.22 Overlapped Tresca and Von Mises yield maps for plane stress
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1.9 Stress Concentration

According to the definition of stress, a reduction in the cross-section area means an
increment of the stress, in an amount proportional to the area reduction. However,
the sharp changes of cross-section, as well as discontinuities, such as holes,
grooves, gouges, etcetera, increase the stress beyond the magnitude given by the
reduction of area. This phenomenon is called stress concentration and it is of great
technological importance, because the local stress may be several times greater than
the calculated nominal stress, so the component may fail at those locations. The
expression of the stress increment due to the stress concentration is the stress
concentration factor, which is defined by the symbol KT, its equation is:

KT ¼ rmax

rapp

where rmax is the maximum stress value at the root or border of the stress con-
centrator, and rapp is the applied or nominal stress. One of the first stress con-
centration factors was obtained by Inglis in 1913, corresponding to a thin sheet with
an elliptic hole in the center, as shown in Fig. 1.23.

Inglis found that the maximum stress is given by:

rmax ¼ rapp 1þ 2
a
b

� �� �

Thus:

KT ¼ 1þ 2
a
b

� �

Notice that for a = b, the hole is circular and KT = 3. Notice as well, that if the
ellipse is too sharp (a > > b), the KT increases to infinite, which actually does not
happen because, before that the material will reach its ultimate tensile strength and
will break. When discontinuities are very acute, such as cracks, the stress

a

b

Max

app



Fig. 1.23 Inglis’s model of a
thin sheet with an elliptic hole
under uniform stress
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concentration loses meaning because the mathematical singularity that arises at the
tip of the defect (since its ratio is close to zero) undetermines the value of KT, in this
case fracture mechanics is applied to determine the stress values at the crack tip.

In practice, the KT values are found in charts, like the one shown in Fig. 1.24,
which are published in strength of materials textbooks, in mechanical design
manuals, as well as the internet. Additionally, there are several low cost applica-
tions for mobile devices that provide the stress concentration factors for a wide
variety of geometries and load conditions.

In Fig. 1.24 can be noticed that the stress concentration magnitude has a stronger
dependency on the sharpness of the stress concentrator, i.e. the radius (r), than on
the magnitude of the cross-section area reduction; for instance, a reduction of the
diameter (D/d) from 1.1 to 1.5 at r/d = 0.22, increases KT from 1.4, to 1.9, that is
about 36%, but if r/d drops to 0.02 at D/d = 1.1, KT is 2.4, that is 71% increment.

Furthermore, the effect of stress concentrators is more severe in brittle materials than
in ductile ones, this is because the plastic deformation increases the radius of the stress
concentrator, and additionally relaxes the stresses, reducing the value ofKT. This effect
is used in glass cutting, which actually is not cutting but breaking, where a sharp blade

Fig. 1.24 Graph of Kt for a round rod with a diameter reduction. Image taken from Beer, Jonhston
and DeWolf, Mechanics of Materials 4th Edition, McGraw-Hill, 2006
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makes a deep score on the surface of the glass, then the glass plate is slightly bent and
the stress concentration induced by the score overcomes the tensile strength and the
glass breaks. Nonetheless, this does not mean that stress concentration may not be a
problem in ductile materials, it simply means that it is less dangerous.
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Chapter 2
Strain

Abstract This chapter begins with the definition of strain from the continuum
mechanics point of view, the description of the strain tensor and the strain transfor-
mation concept; then, the elastic stress strain relations, namely the constitutive
equations, are described for both isotropic and anisotropic behavior. Next is the
description of plasticity and plastic behavior of metallic materials, including tables of
typical mechanical properties of engineering materials, the following topics are
the Baushingher effect, the concepts of real stress and real strain, and the plastic
stress-strain equations. A brief introduction of the numeric analysis of stress and strain
is presented, along with a description of the procedure to perform an analysis of
mechanical behavior by the Finite Element Method and a brief description of the
experimental methods of electric resistance extensometry and polaroscopy tomeasure
stress and strain. At the end of this chapter an introduction to the hardness concept and
the standard methods to measure it is presented.

2.1 Definition of Strain

In mechanics of materials, strain is defined as the change of shape in a body due to
the action of stresses. Such change in shape means the movement of the particles
that constitute the solid body. This movement can be divided into three compo-
nents: (1) rigid body displacement, (2) rotation, and (3) change of relative position
within the body. The vectors that describe the change of shape are: u, v, and w, for
the x, y and z directions respectively, as shown in Fig. 2.1. The change of relative
position within the body is the only one that produces a change in shape, also called
distortion, because the other two just mean a change of position in the space but
without changing the shape. The mathematic analysis of strain requires to define a
vector that describes the distortion only, and therefore the rotation and displacement
components should be eliminated.

To calculate the elongation strain, also called normal strain, consider a thin bar
fixed at one end, and being pulled with a force Fx at the opposite end. As result, the
segment AB in the bar will elongate to a final length A′B′, as shown in Fig. 2.2.
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The point A′ will be displaced a distance u, from its original position, while the
point B will be displaced a distance u (because it is being “pushed” by point A),
plus the elongation of the segment dx. If the elongation ratio of the segment AB is
du/dx, then the total separation between A′ and B′ will be.

dxþ du
dx

dx

If the normal strain is defined as the relative elongation, calculated as the change
of length divided by the initial length, the mathematic expression to determine the
strain of a segment dx in direction x is:

exx ¼ A0B0 � AB
AB

¼ dxþ @u
@x dx� dx

dx

u

v

y

z

x

w

Fig. 2.1 Vectors describing
the change of position of a
volume element in a deformed
solid body. The dotted line is
the initial shape and the solid
line is the final deformed
geometry

A B

A’ B’

dx

(du/dx)dx uu

Fig. 2.2 Diagram for the
determination of elongation
strain of a differential segment
of initial length dx that is
stretched an amount u along
the x direction
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Which results in:

exx ¼ du
dx

Notice that the strain is a vector because it has magnitude and direction. To
identify the strain components the following index notation is introduced:

eij ¼ strain component
i ¼ initial direction of the segment
j ¼ displacement direction

In continuum mechanics it is reasonable to assume that elongation in one
direction is independent from elongation in other directions, thus by analogy: if v is
the displacement of a segment dy in the y direction and w is the displacement of a
segment dz in the z direction, the other components of normal strain are:

eyy ¼ dv
dy

; ezz ¼ dw
dz

Shear strain, in the other hand, is defined as the change of an initially straight
angle at an edge of a cubic volume element, as shown in Fig. 2.3, where there is a
change of shape, but the side dimensions remain constant.

Mathematically, shear strain, identified by the symbol cij, is defined by the
tangent function of the change of straight angle, thus:

cxy ¼ tan hxy ¼ du
dy

Notice that shear strain may come along with a rigid body rotation component,
as shown in Fig. 2.4, but when hxy=−hyx there is only rigid body rotation, and there
is no shear strain. A simple method to eliminate the rigid body rotation component,
is to take the average of the rotation angles.

Fig. 2.3 Definition of shear
strain. The dotted figure is the
initial shape and the solid line
is the shape after shear strain.
Notice that the side
dimensions do not change
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The shear strains are the tangent of the change of straight angle h for the x and
y edges; thus, they are:

tan hxy ¼ dv
dx

tan hyx ¼ du
dy

Taking the average, the shear strain without rigid body rotation is calculated as:

cxy ¼
1
2

tan hxy þ tan hyx
� � ¼ 1

2
dv
dx

þ du
dy

� �

As the order of the addition does not alter the result, it is easy to demonstrate that
cxy = cyx, which means that the shear strain components are symmetric. Thus, the
three independent shear strain components are:

cxy ¼
1
2

du
dy

þ dv
dx

� �
; cxz ¼

1
2

dw
dx

þ du
dz

� �
; cyz ¼

1
2

dv
dz

þ dw
dy

� �

Therefore, the strain is a tensor of nine components, out of which, six are inde-
pendent, three normal and three of shear. The matrix form of the strain tensor is:

eij ¼
exx cxy cxz
cyx eyy cyz
czx czy ezz

0
@

1
A

The strain tensor has the same properties as the stress tensor, which are:

(a) The transformation law (the same as the stress transformation law):

e0 ¼ aeaT

Fig. 2.4 Schematic
illustration that a rigid body
rotation does not produce
shear strain, owing that
hxy = −hyx
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(b) The strain tensor has three invariants:

I1 ¼ exx þ eyy þ ezz

I2 ¼ ðexyÞ2 þðexzÞ2 þðeyzÞ2 � exxeyy � exxezz � eyyezz
I3 ¼ detðeijÞ

(c) The strain components after rotation of the reference axes are calculated by the
Mohr’s circle.

The last property means that, just like stresses, strains also produces tensors
different from the original one when they are seen from a different angle. This can
be physically demonstrated by taking a rectangular piece of latex foil divided into
square elements with orientation parallel to the x and y edges (this will be the foil 1)
and another identical latex foil divided into square elements oriented at 45° with
respect to the x and y edges (this will be the foil 2); then both foils are strained as
shown in Fig. 2.5. The Mohr’s circle of strains, shows that the principal strains are
at 45° from the maximum shear strain, so the squares in foil 1 show the maximum
shear strain, but the elements in foil 2 do not show shear strain.

The following example illustrates the determination of the strain tensor and its
transformation by the Mohr’s circle:

Example The strain tensor of an initially square-shaped sheet, of 1 cm length per
side is:

e ¼ 0:1 0:27
0:27 �0:2

� �

Fig. 2.5 Physical demonstration of the strain transformation
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According to the definition of elongation strain, and assuming uniform strain:

exx ¼ du=dx ¼ Du=xo

Du ¼ xf � xo

Thus:

exx ¼ xf � xo
� �

=xo ¼ xf =xo
� �þ 1

xf ¼ xoðexx þ 1Þ

Substituting:

xf ¼ 1:0 0:1 þ 1ð Þ ¼ 1:1 cm

Similarly:

yf ¼ yoðeyy þ 1Þ ¼ 1:0 �0:2þ 1ð Þ ¼ 0:8 cm

The shear strain is the change of straight angle, so:

hxy ¼ arctan 0:27ð Þ ¼ 15:5�

The final shape of a volume element with these strains is:

To construct the Mohr circle, the center is:

C ¼ exx þ eyy
2

¼ 0:1þð�0:2Þ
2

¼ �0:05

The ratio is the maximum shear strain:

cmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx � Cð Þ2 þ e2xy

q

cmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 þ 0:272

p
¼ 0:275
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The principal strains are:

e1 ¼ Cþ cmax ¼ �0:05þ 0:275 ¼ 0:225

e3 ¼ C� cmax ¼ �0:05� 0:275 ¼ �0:325

The orientation of e1 is:

2h ¼ tan�1 0:27
0:15

� �
¼ 61�

The Mohr’s circle is:

Example An initially square volume element of unit dimensions is strained at the
middle of a rolling pass as shown in the figure bellow:

Determine the strain tensor of the shaded volume element.
According to the definition of elongation strain:

exx ¼ xf � xo
� �

=xo ¼ 1:6� 1:0ð Þ=1:0 ¼ 0:60

eyy ¼ yf � yo
� �

=yo ¼ 0:6� 1:0ð Þ=1:0 ¼ �0:40
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The shear strain is:

cxy ¼ 1=2 ½tan hxy þ tan hyx� ¼ 1=2½tanð�35�Þ þ tan þ 65�ð Þ� ¼ 0:72

The strain tensor is:

e ¼ 0:60 0:72
0:72 �0:40

� �

To construct the Mohr’s circle, the center is:

C ¼ exx þ eyy
2

¼ 0:6þð�0:4Þ
2

¼ þ 0:10

The maximum shear strain is:

cmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx � Cð Þ2 þ e2xy

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52 þ 0:722

p
¼ 0:877

The principal strains are:

e1 ¼ Cþ cmax ¼ 0:10 þ 0:877 ¼ 0:977

e3 ¼ C � cmax ¼ 0:10 � 0:877 ¼ �0:777

The Mohr’s circle is:
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2.2 Elastic Stress-Strain Relations

Once stresses and strains have been defined, the next step is to know how much
strain is produced by a stress component. If the material is linear-elastic, under
uniaxial tension, the stress-strain relation is the Hooke’s law:

r ¼ E e

Since the density of most engineering solid materials does not change when they
are deformed, as the material elongates, it must become thinner to maintain the
volume constant, therefore, a tension stress, say rxx will produce three strain
components: one elongation in the direction of the stress (exx) and two of con-
traction in the other two directions (eyy, ezz), as shown in Fig. 2.6.

If the solid is isotropic the lateral contraction is the same in the transverse
direction, thus eyy = ezz, and therefore, the ratio eyy/exx is constant. This is known as
Poisson’s Ratio, identified by the symbol v. The Poisson’s Ratio is defined as the
negative of the lateral transverse strain divided into the elongation strain:

m ¼ � etransverse
eelongation

In the case of shear strains, each shear stress produces only its own corre-
sponding shear strain component, so the Hooke’s law for shear strain is:

s ¼ G c

where G is the shear modulus. These three elastic constants for an isotropic material
are related by the following equation:

G ¼ E
2 1þ mð Þ

Fig. 2.6 Strain components produced by a uniaxial tension stress
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Therefore, it is said that an isotropic material has two independent elastic con-
stants, while the third one can be calculated by the other two. The typical values of
the elastic constants for some engineering materials are shown in Table 2.1.

In Table 2.1, it can be observed that the values of E and G for metals and
ceramics are very large (in the order of 109 Pa or 106 psi), which indicates that these
materials are very stiff, whereas the polymers exhibit the lowest values of E and G,
so they are able to go through great elastic strains at rather low stress levels, being
the most flexible materials. Finally, it is important to mention that the elastic
constants vary little for the same material group, regardless the chemical compo-
sition and heat treatment, so they are usually reported for material groups rather
than specific materials, such as the yield strength. However the elastic constants are
highly dependent on temperature, especially for polymers, so care has to be taken
on using the corresponding value for the service temperature.

The elastic stress-strain relations for isotropic materials are obtained by applying
the superposition principle, which states that the strains produced in the same
direction can be algebraically summed in order to obtain the total strain.

According to Hooke’s law, the magnitude of the strain exx produced by the stress
rxx is:

exx ¼ rxx=E

The transverse strain component produced by the stress rxx is obtained by the
Poisson’s ratio:

eyy ¼ ezz ¼ �mexx ¼ � mrxx
E

Table 2.1 Elastic constants for isotropic materials

Material E GPa (106 psi) G GPa (106 psi) m

Iron 211.4 (30.6) 81.6 (11.8) 0.293

Aluminum 70.3 (10.2) 26.1 (3.8) 0.345

Cooper 129.8 (18.8) 48.3 (7.0) 0.343

Nickel 199.5 (28.9) 76.0 (11.0) 0.3

Magnesium 44.7 (6.5) 17.3 (2.5) 0.291

Gold 78.0 (11.3) 27.0 (3.9) 0.44

Silver 82.7 (12.0) 30.3 (4.4) 0.367

Alumina (Al2O3) 415 (60) – –

Tungsten carbide (WC) 534.4 (77.5) 219 (31.8) 0.22

Diamond 965 (140) – –

Glass 80.1 (11.6) 31.5 (4.6) 0.27

Polycarbonate 2.4 (0.35) – –

Polyetilene 0.4 a 1.3 – –
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Table 2.2 shows the strain components produced by each normal stress com-
ponent, determined the previous procedure:

By applying the superposition principle, the strain components in each direction
(column in the Table 2.2) are summed up to obtain the total strain. The shear strains
as obtained for each corresponding Hooke’s law for shear sij = G cij. The result is
the following set of equations called Constitutive Equations.

exx ¼ 1
E rxx � t ryy þ rzz

� �� �
exy ¼ rxy

G

eyy ¼ 1
E ryy � t rxx þ rzzð Þ� �

exz ¼ rxz
G

ezz ¼ 1
E rzz � t rxx þ ryy

� �� �
exz ¼ rxz

G

The following example illustrates the use of the Constitutive Equations.

Example A thin sheet is under the stresses: rxx = 1400 kg/cm2, rzz = 0, sxy =
500 kg/cm2 and ezz = −0.0003. Calculate the rest of the stresses and strains if:
E = 20 � 105 kg/cm2 and v = 0.3.

Solution The Constitutive Equations for normal strain are:

Ec:1 exx ¼ E�1 rxx � m ryy þ rzz
� �� � ¼ 20x105

� ��1
1400� 0:3 ryy

� �� �
Ec:2 eyy ¼ E�1 ryy � m rxx þrzzð Þ� � ¼ 20x105

� ��1
ryy � 0:3 1400ð Þ� �

Ec:3 ezz ¼ E�1 rzz � m rxx þ ryy
� �� � ¼ 20x105

� ��1 �0:3 1400þryy
� �� � ¼ �0:0003

From Ec. 3:

ryy ¼ �0:0003� 20� 105
� �

= �0:3ð Þ � 1400ð Þ ¼ 600 kg/cm2

Substituting ryy ¼ 600 kg/cm2 into Ecs. 1 and 2

exx ¼ 20� 105
� ��1

1400� 0:3 600ð Þ½ � ¼ 0:00061

eyy ¼ 20� 105
� ��1

600� 0:3 1400ð Þ½ � ¼ 0:00009

Table 2.2 Strain
components produced by the
normal components of stress

Stress/Strain exx eyy ezz
rxx

rxx

E �m rxx

E �m rxx

E
ryy �m ryy

E
ryy

E �m ryy

E
rzz �m rzz

E
ryy

E
rzz

E
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The shear modulus is:

G ¼ E
2 1þ vð Þ ¼

20� 105

2 1þ 0:3ð Þ ¼ 7:69� 105 kg/cm2

Therefore, the shear component is:

cxy ¼ sxy=G ¼ 500 kg/cm2=7:69� 105 ¼ 0:00065

2.3 Constitutive Equations for Non-isotropic Elastic
Materials (Elastic Anisotropy)

The anisotropic behavior refers to the variation of properties in different directions,
which is quite common in engineering materials, and may have different causes,
being the main ones:

• Crystalline orientation: Single-crystals are naturally anisotropic because the
elastic constants depend on the interplanar distances, coordination number, and
etcetera; since these characteristics change with direction, so do the elastic
constants. In fact, anisotropy levels are classified according to the level of
symmetry of the crystalline structures.

• Preferential orientation (texture): Polycrystalline metals are usually isotropic
because the orientation of the grains is random, however, some forming pro-
cesses like rolling, extrusion and wire drawing develop a preferential crystalline
orientation of the grains. This preferential orientation is known as texture and
it may induce anisotropic behavior.

• Fibrous or banded microstructure: Many engineering materials feature, natu-
rally or artificially, an alignment of second phase constituents, forming a
so-called banded microstructure. Some other materials are constituted of fibers
aligned in preferential directions, like wood and fiber reinforced composites.
These materials are clearly anisotropic.

In the fully anisotropic case, theoretically each stress component produces its
corresponding strain component, so there is an elastic constant for each stress-strain
component pair. Mathematically, the constitutive equation for the fully anisotropic
case can be written as:

eij ¼ Sijklrkl

Since there are six independent components of stress and six independent
components of the strain, the total number of anisotropic elastic constants is 36, as
demonstrated by the following matrix equation:
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exx
eyy
ezz
eyz
exz
exy

0
BBBBBB@

1
CCCCCCA

¼

Sxxxx Sxxyy Sxxzz Sxxyz Sxxxz Sxxxy
Syyxx Syyyy Syyzz Syyyz Syyxz Syyxy
Szzxx Szzyy Szzzz Szzyz Szzxz Szzxy
Syzxx Syzyy Syzzz Syzyz Syzxz Syzxy
Sxzxx Sxzyy Sxzzz Sxzyz Sxzxz Sxzxy
Sxyxx Sxyyy Sxyzz Sxyyz Sxyxz Sxyxy

0
BBBBBB@

1
CCCCCCA

�

rxx
ryy
rzz
syz
sxz
sxy

0
BBBBBB@

1
CCCCCCA

Notice that Sijkl is the elastic constant of the ij strain for a given kl stress. Sijkl is a
Stiffness elastic constant. Whereas if the stresses are calculated from the strains the
elastic constant is named Compliance. Therefore:

rij ¼ Cijklekl

It is important to point out that the stiffness constants are not the inverse of the
compliance constants, as it might be thought of, therefore:

Sijkl 6¼ 1=Cijkl

As normal stresses do not produce shear strains and shear stresses do not produce
normal strains, the number of constants for the fully anisotropic case is reduced to
twelve; as the level if anisotropy is reduced, the number of elastic constants is reduced
too. Table 2.3 shows the number of constants for different levels of anisotropy.

To simplify the writing of the anisotropic elastic constants, a short notation was
introduced, the equivalences are shown in Table 2.4.

Thus, the stiffness tensor in short notation for orthorhombic materials is:

Sij ¼

S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0

0 0 0 S44
0

0

0 0 0 0 S55 0
0 0 0 0 0 S66

0
BBBBBBBB@

1
CCCCCCCCA

Table 2.3 Number of
anisotropic elastic constants
by symmetry level

Level No. of independent constants

Triclinic 12

Monoclinic 12

Orthorhombic 9

Tetragonal 6

Hexagonal 5

Cubic 3

Isotropic 2
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The stiffness (S) and compliance (C) constants of some single-crystal materials
are given in Table 2.5.

The use of non-isotropic stress-strain relations is quite simple, as the following
example shows:

Example Determine the isotropic and anisotropic strains of a material under the
following stress state:

r ¼
50 20 0
20 �50 10
0 10 100

0
@

1
A ksi

The isotropic elastic constants are:
E = 20 � 106 psi, v = 0.35 subject to the stress tensor:

Table 2.4 Short index notation of the indexes of anisotropic elastic constants

Indexes Short notation

xx 1

yy 2

zz 3

yz 4

xz 5

xy 6

Table 2.5 Constants of compliance (C) and of stiffness (S) for common metals

Material C11 C12 C44 S11 S12 S44
Cubic 1010 Pa 10−11 Pa−1

Aluminum 10.82 6.13 2.85 1.57 −0.57 3.51

Cooper 16.84 12.14 7.54 1.50 −0.63 1.33

Iron 23.70 14.10 11.60 0.80 −0.28 0.86

Nickel 24.65 14.73 12.47 0.73 −0.27 0.80

Hexagonal C11 C12 C13 C33 C44 S11 S12 S13 S33 S44
Magnesium 5.97 2.62 2.17 6.17 1.64 2.20 −0.79 −0.5 1.97 6.10

Titanium 16.0 9.0 6.6 18.1 4.65 0.97 −0.47 −0.18 0.69 2.61

Zinc 16.1 3.42 5.01 6.10 3.83 0.84 0.05 −0.73 2.84 2.61
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The anisotropic constants are:

Sijkl ¼

5 1:5 1:5 0 0 0
1:5 5 1:5 0 0 0
1:5 1:5 5 0 0 0
0 0 0 2:5 0 0
0 0 0 0 2:5 0
0 0 0 0 0 2::5

0
BBBBBB@

1
CCCCCCA

� 10�5 ksi�1

Solution

(a) Isotropic case:

exx ¼ 1
E

rxx � m ryy þ rzz
� �� � ¼ 20 000ð Þ�1½50� 0:35 50þ 100ð Þ� ¼ 0:001625

eyy ¼ 1
E

ryy � m rxx þ rzzð Þ� � ¼ 20 000ð Þ�1½�50� 0:35 50� 50ð Þ� ¼ �0:005125

ezz ¼ 1
E

rzz � m rxx þ ryy
� �� � ¼ 20 000ð Þ�1½100� 0:35 50 � 50ð Þ� ¼ 0:0005

G ¼ E
2 1þ mð Þ ¼

200000
2 1þ 0:35ð Þ ¼ 7407 ksi

cxy ¼
sxy
G

¼ 20
7407

¼ 0:0027

cxz ¼
sxz
G

¼ 0

cyz ¼
syz
G

¼ 10
7407

¼ 0:00135

(b) Anisotropic case:

exx
eyy
ezz
eyz
exz
exy

0
BBBBBB@

1
CCCCCCA

¼

5 1:5 1:5 0 0 0
1:5 5 1:5 0 0 0
1:5 1:5 5 0 0 0
0 0 0 2:5 0 0
0 0 0 0 2:5 0
0 0 0 0 0 2::5

0
BBBBBB@

1
CCCCCCA

� 10�5 ksi�1 �

50
�50
100
10
0
20

0
BBBBBB@

1
CCCCCCA

ksi
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Performing operations:

exx ¼ 5 50ð Þþ 1:5 �50ð Þþ 1:5 100ð Þ½ � � 10�5 ¼ 0:00325

eyy ¼ 1:5 50ð Þþ 5 �50ð Þþ 1:5 100ð Þ½ � � 10�5 ¼ �0:0025

ezz ¼ 1:5 50ð Þþ 1:5 �50ð Þþ 5 100ð Þ½ � � 10�5 ¼ 0:005

cyz ¼ 2:5 10ð Þ � 10�5 ¼ 0:0025

cxz ¼ 0

cxy ¼ 2:5 20ð Þ � 10�5 ¼ 0:005

2.4 Plasticity

In the field of Mechanical Behavior of Materials, plasticity is the ability of a
material to have a permanent and irreversible change of shape and/or dimensions as
a result of the application of stresses, without change of volume. In all materials,
plastic deformation produces changes in the internal particle arrangement and in
the microstructure, and therefore, affects the mechanical properties, and the sub-
sequent plastic behavior. Plastic strain has three important characteristics which can
be explained by the process depicted in Fig. 2.7.

Fig. 2.7 Dependency of plastic strain on the path and the accumulated work
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The square on the left is the initial shape, in the deformation path A, indicated by the
solid arrow, to go into the intermediate shape, the elongation strain is, say e1A = 0.5,
and the shear strain is, say c1A = 1.0, and then to go into the final shape, a new elon-
gation strain of, say e2A = −0.5, and a shear strain of, say c1A = 1-.0 have to be applied ;
even that the initial and final shapes are identical the total strains are not zero, but are the
sum of the absolute values of the strain in every step; in this case eAtotal = |0.5| + |
−0.5| = 1.0, and cAtotal = |1.0| + |−1.0| = 2.0. In the other hand, the pass from the
initial form to the intermediate one, requires a work W1, which produces the strain e1A.
Since the system cannot return the introduced work nor elastically recover, an addi-
tional workW2 must be introduced to carry out the strain e2A, so the total spent work will
be W1 + W2. In the deformation path B, indicated by the dotted arrow, obviously the
intermediate shape is different to that of path A, therefore the strain components are
different to those of path A, let’s say: eBtotal = |−0.5| + |−1.5| = 1.5, and cBtotal = |
−0.5| + |−0.5| = 1.0; additionally, it is obvious that a different amount of work is
required to execute path B, as compared to the work spent in path A.

According to the process above described, the following characteristics of
plastic strain can be established:

(1) Irreversibility: A plastically strained body cannot return the work done to
deform it, so any change of geometry, even if it returns it to its initial shape, will
require additional work. The main causes of irreversibility is the rearrangement
of the particles inside the body which, according to the Second Law of
Thermodynamics, that states that any system will always go towards a state of
maxim entropy, it will not spontaneously return to a more ordered arrangment.

(2) Path dependency: the work required for plastic strain depends on the path
followed during the change of shape.

(3) Accumulative: The total strain is the sum of the absolute values of the strains
applied in every step to reach a final shape and dimensions.

Since in plastic deformation the volume is constant, the following ratio is true:
DV/V = 0, now, in a unit size cube element, the volume is V = dxdydz, under the
strains exx, eyy, and ezz, the final dimensions of the strained cube are: (1 + exx),
(1 + eyy), and (1 + ezz), thus, the following equation can be written:

DV=V ¼ ½ð1þ exxÞdxð1þ eyyÞdyð1þ ezzÞdz� dxdydz�= dxdydzð Þ ¼ 0

Simplifying terms:

DV=V ¼ ð1þ exxÞð1þ eyyÞð1þ ezzÞ�1 ¼ 0

Neglecting the terms where the strain components multiply to each other, it can
be established that in a solid that deforms under constant volume:

exx þ eyy þ ezz ¼ 0
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This condition is called strain compatibility and it implies that normal strains are
not independent.

The next important characteristics of plastic behavior of engineering materials
are seen in the stress-strain curve in uniaxial tension, which typical form is shown
in Fig. 2.8.

Plasticity determine the following characteristics of plastic strain behavior:

1. Yield strength. It is the stress value at which the plastic strain begins. The
stress-strain curve is no longer linear beyond this point. The yield strength is a
material’s property.

2. Elastic-plastic behavior. It is the condition where plastic strain and elastic strain
co-exist. (It must be remembered that the appearance of plasticity does not imply
that elasticity is lost).

3. Strain hardening. After yield, if it is necessary to increase the stress to continue
deforming the material, thus it is say that the material exhibits strain hardening.

4. Tensile strength. It is the maximum tension stress that material can withstand. It
is a material’s property. After reaching the maximum on the stress-strain curve,
the stress decreases because the material undergoes to a local contraction called
“neck”. The neck is responsible for ductile fracture mechanism and also
determines the ductility.

5. Fracture. It is the culmination of the stress-strain process. Fracture stress is not a
material’s property, but it depends on other factors such as geometry and the
presence of flaws.

6. Ductility. It is the maximum normal strain or plastic elongation that the material
experiences just before fracture. It is determined by drawing down a straight line
parallel to the elasticity line in order to subtract the elastic strain. In practice, it is

Fig. 2.8 Stress-strain curve in tension showing the main characteristics of plastic strain
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determined by joining together the two parts of the fractured specimen and
measuring the final length. It is also frequently referred to as the percentage of
cross-area reduction.

7. Plastic hysteresis. This phenomenon occurs in the plastic regime, if the load is
reduced to zero and then the material is reloaded, the stress-strain path in the
unload cycle is different to that in the upload stage, forming a hysteresis loop.

8. Anelasticity. Some materials show an elastic time-dependent recovery after they
have been plastically deformed and then unloaded to zero stress.

Many times the yield point is not well defined on the stress-strain curve, so in
order to determine a unambiguous yield strength value it was decided that the
design of structures could tolerate a small percentage of plastic strain, so the yield
strength may defined as the stress to reach this small plastic strain. This method,
known as “offset”, and it was introduced by the ASTM E8 “Standard Test Method
for Tension Testing of Metallic Materials”, where the offset yield strength is
defined as the stress where plastic elongation strain is 0.2%. It is determined by the
intersection of the stress-strain curve with a straight line, parallel to the elastic line
on the stress-strain curve, which starts at 0.2% strain, as shown in Fig. 2.9. When
yield strength is obtained by the offset method, its symbol is r0.2%.

The stress-strain curve in uniaxial tension is also used to classify the engineering
materials from the mechanical behavior point of view, this classification is show
schematically in Fig. 2.10.

The characteristics of the materials classified according to this criterion are:

• Hard and brittle. They feature a high yield strength, low strain hardening and
low ductility. The Young’s modulus of these materials is often very high. These
materials exhibit high hardness and stiffness as well, but are brittle, so they do
not resists impact loads nor high strains. Typical hard and brittle materials are
ceramics and glass.

• Soft and weak. They feature a low yield strength, low strain hardening and high
ductility, so they exhibit high formability. The Young’s modulus may be low,
but not necessarily. Typical soft and weak materials are lead and tin alloys.

Fig. 2.9 Determination of
the 0.2% offset yield strength
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• High strength materials or tough. They feature high yield strength, large strain
hardening and moderate to high ductility. The Young’s modulus is preferably
high. These materials resist heavy loads, strong impacts and absorb a great deal
of work before fracturing. Typical tough materials are steel and nickel alloys.

• Low strength materials or weak. They feature low mechanical strength and
moderated to low ductility. The Young’s modulus is usually low. These materials
have very low load bearing capabilities and do not resist impacts, they wear and
quickly deteriorate in service. Typical weak materials are polymer foams.

Hard and brittle materials are used in cutting tools and wherever high abrasive
wear and erosion resistance are required, however, their brittleness makes them
easy to get damaged by impacts, and they are not resistant to flexion and thermal
shock. Soft and ductile materials are used to fabricate components of intricate forms
or that require great plastic deformations, but its low strength limits its application
to low load bearing service conditions. To combine the best qualities of the
aforementioned materials, scientists and engineers have spent a great deal of effort
to combine strength and ductility, so they can fabricate components that may be
shaped easily, but once in service can withstand severe work conditions, such as:
impacts, extreme loads, shock waves and wear, these are the so called high strength
materials. Finally, weak materials have applications in one-use components, such
as disposable cups, low durability items and as stuffing.

The typical tensile properties of some engineering materials are shown in
Table 2.6. It is observed that the strongest materials are the ferrous metals. An
interesting material is titanium, which features a mechanical strength similar to low
alloy steels, but its high corrosion resistance and low density make it an excellent
choice for applications in high-precision machinery and aero spatial equipment.
Non-ferrous alloys feature intermediate to low mechanical strengths; nonetheless,

St
re

ss

Strain

Soft and ductile

High strength or 
tough

Hard and brittle

Low strength or weak

Fig. 2.10 Classification of
materials according to their
stress-strain curve in uniaxial
tension
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they usually have other physical properties such as high electrical conductivity, high
thermal conductivity and low density, which make them a good choice for wire
conductors, domestic appliances, electrical and illumination devices and light weight
vehicles. Polymers have the lowest mechanical strength levels, although their low
density, great chemical stability and easy ofmanufacturemakes them ideal candidates

Table 2.6 Tension properties of some common engineering materials

Group Material r0 (MPa) rmax (MPa) %Dl

Ferrous metals Low C steel 250–400 340–580 40–80

Medium C steel 300–900 400–1200 12–92

High C steel 400–1200 550–1640 27–92

Low alloy steel 400–1100 460–1200 14–100

Stainless steel 170–1000 480–2240 62–180

Cast iron 215–790 350–1000 10–35

Nonferrous alloys Aluminum 30–500 60–550 22–35

Cooper 30–500 100–550 30–90

Nickel 70–1100 345–1200 80–110

Titanium 250–1250 300–1600 14–120

Zinc 80–450 130–520 10–100

Composites Glass fiber 110–192 130–240 7–23

Carbon fiber 550–1050 500–1050 6.1–88

Polymers Natural rubber 20–30 22–32 0.15–0.25

Neoprene 3–24 3–24 0.1–0.3

Elastomers (PU) 25–50 25–50 0.2–0.4

Polycarbonate 60–70 60–70 2.1–4.6

Polietilene 18–29 21–45 1.44–1.72

PCV 35–52 40–65 1.46–5.12

Flexible foams 0.01–3 0.01–3 0.005–0.09

Rigid foams 0.3–12 0.5–12 0.002–0.91

Ceramics Alumina 690–5500a 350–665 3.3–4.8

SiC 1000–5250a 370–680 2.5–5

WC 3350–6800a 370–550 2–3.8

Glass Borosilicate 260–380a 22–32 0.5–0.7

Silica 1100–1600a 45–152 0.6–0.8

Soda glass 360–420a 30–55 0.55–0.7

Rocks Brick 50–140a 7–14 1–2

Concrete 32–60a 2–6 0.35–0.45

Rock 34–298a 5–17 0.7–1.5

Bio-materials Wood 30–70 60–100 5–9

Leather 5–10 20–26 3–5

Natural fibers 6–200 5–15
aThe yield strength in this materials is measured in compression, since its tensile strength is very
low
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for applications in components, parts and structures that have low load requirements
such as household appliances, office equipment, furniture and parts of light machines
and body parts of transportation vehicles. Ceramics and glass are highly resistant to
compression and exhibit high hardness, but above all, they are chemically inert, which
makes them ideal for the fabrication of process equipment, vessels and piping for
corrosive substances, biologically sterile utensils and food processing equipment, as
well as for high wear resistance applications.

Since the beginning of civilization Rocks have an unmovable place in the
construction industry, mainly due to their high availability, high durability, high
resistance to compressive stresses, and low cost. Biomaterials used to be neglected
by modern engineers, but in recent years their use has gained terrain as they are a
good option for manufacturing temporary use and disposable components, because
they are inexpensive, easy to work and their environmental impact is minimum. An
interesting case is the come back use of vegetal fibers to manufacture airplane seats,
temporary shelters, clothes and gear for personal protection due to the already
mentioned advantages.

The Bauschinger effect. A phenomenon related to the path dependency of
plastic strain, mainly observed in metals, is the Bauschinger effect, which is the
reduction of the yield strength when a material is loaded in the opposite direction of
a previous load that produced certain amount of plastic strain. For example, if the
material is plastically deformed in tension, and then is immediately loaded in
compression, the yield strength would be smaller than if it had been strained
directly in compression. The Bauschinger effect can be observed in the stress-strain
curve, as depicted in Fig. 2.11.

Some shaping processes take advantage of the Baushingher effect to increase its
efficiency, one example is bar cold-straightening, where the bars are bent in
sequential opposite directions, to save energy and increase the process rate by the
reduced yield strength resulting from the Bauschingher effect.

Fig. 2.11 Baushingher effect
in a stress-strain record
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Strain energy: The deformation of a material requires a work supply, and
according to the energy conservation principle, the supplied work should transform
into stored energy; which is the strain energy. The strain energy, represented by U,
can be calculated by the following equation:

U ¼
Z

rde

If the strain is uniform, the previous equation cab be simplified as:

U ¼ F
A

� �
Dl
l0

� �
¼ FDl

Al0

Notice that the product FDl is force-times-distance, which is the work, while the
product Al0, is the volume, therefore the integral

R
rde represents the work per unit

volume supplied to deform a material. The elastic strain energy is called stiffness,
whereas the plastic strain energy is called toughness and both are calculated as the
area under the curve, as shown in Fig. 2.12.

2.5 Real Stress and Strain

So far, the calculation of stress has been done by dividing load over the initial
cross-section area (F/A0) and the strain has been calculated as elongation over initial
length (Dl/l0), they are referred as engineering stress and engineering strain,
respectively. However, in practice both the specimen’s cross-section area and
length change gradually as load is increased. In the tension test, as the length of the
test specimen increases, the cross-section area decreases, so the real values of both

Fig. 2.12 Elastic strain energy (Stiffness) and plastic strain energy (Toughness)
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stress and strain in a given instant are different from the engineering ones, since
these are calculated by using the initial dimensions. Based on the latter, real stress
is defined as:

rreal ¼ P
Ai

Where Ai is the instantaneous cross-section area. Real strain, represented by the
symbol e, can be calculated as the sum of the differential length increments with
respect to the immediately previous length. Mathematically, this is an integral
between the limits lo and l, which is:

e ¼
Z l

l0

dl
l
¼ ln

l
l0

� �

The following example shows that real strain is a more congruent measure of
strain than engineering strain, in terms of the magnitude of strain that has to be
applied in order to achieve a determined shape.

Example Calculate engineering and real strains resulting from elongating a body
twice its initial length and by compressing it to near-zero thickness.

Solution If the initial length is lO = 1.0 and the final length is l = 2.0, the engi-
neering strain is:

e ¼ Dl=lO ¼ 2:0� 1:0ð Þ= 1:0 ¼ 1:0

The real strain is:

e ¼ ln l=loð Þ ¼ ln 2:0=1:0ð Þ ¼ 0:693

For the compression case, the engineering strain is:

e ¼ Dl=lo ¼ 1:0�0:0ð Þ=1:0 ¼ �1:0

And the real strain is:

e ¼ ln l=loð Þ ¼ ln 1:0=0:0ð Þ ¼ �1

Notice that engineering strain gives the same value, but of opposite sign for the
elongation and compression, whereas the real strain is 70% for the elongation and is
infinite to reach a zero thickness. Clearly, real strain is more representative of the
amount strain required in each case.

The relations between engineering and real stress and strain, can be obtained as
follows:
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The engineering strain can be calculated as:

e ¼ Dl=lO ¼ l=l0�1

Therefore:

l=l0 ¼ eþ 1

Substituting this expression into the definition of real strain:

e ¼ lnðeþ 1Þ

The real stress can be determined with base on the definitions of both engi-
neering and real stresses:

rreal ¼ P=Ai

reng ¼ P=A0

Multiplying the formula of rreal by Ao/Ao:

rreal ¼ P=Aið Þ A0=A0ð Þ ¼ P=A0ð Þ A0=Aið Þ

If the volume is constant it can be written that:

A0l0 ¼ A l

Rearranging terms:

A0=A ¼ l=l0

Taking the relation between real and engineering strain:

e ¼ lnð1þ eÞ ¼ ln l=l0ð Þ ¼ ln A0=Að Þ

Eliminating the logarithms and substituting:

rreal ¼ rengð1þ eÞ

By plotting real and engineering stress and strain of the same tension test, it can
be observed that the real stress-strain curve is located above and to the left of the
engineering curve, as shown in Fig. 2.13. Additionally, the real stress-strain curve
does not have a drop after the maximum stress.
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2.6 Plastic Stress-Strain Relations

A constitutive equation between real stress and strain was proposed by Ramberg
and Osgood in 1943, and has the following form:

e
eo

¼ r
ro

þ a
r
ro

� �n

Where r0 is the yield strength, e0 is the real strain at yield, n is the strain
hardening exponent and a is an experimental constant. In 1945, Hollomon proposed
a simpler constitutive equation, which has been extensively used ever since, and has
the form:

rreal ¼ k en

Where n is the strain hardening exponent and k is a constant defined as the real
stress when e = 1.0. Some typical values of n are given in Table 2.7, where it can
be observed that steels exhibit the largest strain hardening exponents, being the
highest reported value of 0.55, this means that the ultimate tensile strength can
double the yield strength; while aluminum alloys and cast irons strain-harden the
least. The test method for measuring tensile strain-hardening exponents is described
in the ASTM E-646 standard.

Fig. 2.13 Real and
engineering stress-strain
curves in uniaxial tension

Table 2.7 Typical values of
the Hollomon’s strain
hardening exponent

Material n

Carbon and Low Alloy Steel 0.45–0.55

Pure Cooper 0.3–0.35

Brass and Copper Alloys 0.35–0.4

Aluminum Alloys 0.15–0.25

Cast Iron 0.05–0.15
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To facilitate the analysis of plastic behavior of specific materials, a few ideal cases
of the Hollomon’s equation have been introduced, which are schematically depicted
in Fig. 2.14. Plaster and raw clay exhibit an ideal rigid-plastic behavior, while high
carbon wire can be an ideal elastic-plastic material. Linear-plastic idealizations are
used to model the behavior of high strain hardening materials just after yield, where
the real stress-strain curve is very step. Finally, parabolic hardening represents the
average plastic behavior of carbon and low alloy steels, so this ideallization
is particularly used in numerical methods of mechanical behavior modeling.

2.7 Numeric Analysis of Stress and Strain

The finite element method (FEM) is the most frequently used technique to calculate
stress and strain of complex geometry bodies, under multiple, non-uniform loads.
Currently, this powerful technique is readily available thanks to the great advance
and cost reduction of computational equipment and software which allows mod-
elling three-dimensions problems, plastic strain, strain hardening, anisotropy,
thermal loads and other complex conditions of mechanical behavior. In some cases
FEM modeling is even considered more precise than analytical or experimental
stress and strain measurements.

Fig. 2.14 Ideal plastic stress-strain curves
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The method consists of constructing a virtual model of the body to be analyzed
as an assemblage of volume elements, which have to be small enough so that the
model approaches the real geometry. The smaller the element the more precise is
the analysis. Each individual volume element has finite dimensions, hence the name
of this method. The elements are connected by nodes, so a set of equilibrium
equations, one per node, is obtained. The process of discretization of the geometry
is called meshing, the size of the mesh and the shape of the elements depend on the
desired precision and the complexity of the form. The known loads, strains and
displacements, are called boundary conditions.

In a simple way, FEM can be explained in the model depicted in Fig. 2.15,
which consists of an elastic bar formed by one element and two nodes.

In each node, the force F produces a displacement u in the direction x, which is
proportional to a constant Cij, the equations that describe these reactions are:

F1 ¼ C11u1 þC12u2
F2 ¼ C21u1 þC22u2

The latter equations can be written in matrix form as:

F1

F2

	 

¼ C11 C12

C21 C22

� �
u1
u2

	 


Notice that for each node, there is an equation, therefore, if a second element is
added, there is a new node that experiences a force F3, so a new reaction equation
has to be added, thus the resulting matrix is:

F1

F2

F3

8<
:

9=
; ¼

C11 C12 0
C21 C22 þC22 C23

0 C32 C33

2
4

3
5 u1

u2
u3

8<
:

9=
;

If the behavior is elastic, the constants matrix is known as stiffness matrix and the
constant values depend on the material’s elastic properties, whereas the boundary
conditions are usually, known values of F and u, so there has to be the same number
of equations as unknowns in order to solve the system. Typically, the stiffness
matrix is determined by the software so the user only has to focus on constructing a
geometric model that closely resembles the actual body and to assign the correct

Fig. 2.15 Basic model of the
finite element method
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boundary conditions. Although this looks simple, it may become quite complicated
and complex, so a great deal of experience and theoretical knowledge is required, in
order to perform correct FEM simulations.

In most problems of mechanical behavior analysis, the loads are known and the
stresses, strains and displacements are the sought unknowns. According to the
previous description, FEM normally determine the displacements (u, v, w) of each
node, with these values the strains are calculated, and finally the stresses are cal-
culated by using the constitutive equations. If the problem includes plastic strain, a
plasticity constitutive equation, like the Hollomon’s is used.

The procedure to perform an analysis of mechanical behavior by the FEM
consists of the following steps:

(1) Geometrical model and meshing. It consists in the making of a computer model
of the body geometry, usually by using a drawing software such as AutoCAD,
although many commercial FEM software come with its own geometry con-
struction module. The geometrical model must be as close as possible to the
real body, although some simplifications can be made, for example,
half-models may be used if the symmetry conditions allow it. The meshing
process is done automatically by most commercial software, where the mesh
size as well as the type of element are selected by the user. The rule is that the
mesh has to be finer where a more precise solution is desired, or where the
geometry is more complex. Figure 2.16 shows an example of a geometrical
model.

Fig. 2.16 Geometric model and mesh of a Finite Element Method software. Image courtesy of
Manuel Alejandro Beltrán Zúñiga
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(2) Boundary conditions: Boundary conditions are the known values of displace-
ment, load, stress or strain pertaining to the case to be analyzed. Their selection
demands a good knowledge of mechanic behavior, since from these depend the
success of the FEM modeling. In most commercial software there are
pre-constructed options to assign the boundary conditions, for example, pres-
sure, zero displacements, torque, and etcetera; but there is always the option to
assign boundary conditions node by node, which is hard work and must be
done by experts. In this stage the mechanical properties are introduced. Most of
the commercial software have libraries of common material properties as well
as relations to determine the property variations with temperature or models to
estimate secondary mechanical properties, such as stiffness or toughness. It just
has to be verified that the selected mechanical properties are representative of
the actual service conditions of the component to be modeled.

(3) Solution and post process: The output of a FEM model is the solution of the
matrix equations by some numeric method, like the Newton-Radson. FEM
commercial software automatically construct and solve the matrix equations
and verify the validity of the solution through a process called convergency,
hence, this stage is carried out without the user’s intervention. The precision
depends basically on the quality of the computer program and the processing
capacity of the computer executing the software. The output results of a FEM
computer program include:

(a) Any component of the stress or strain tensor.
(b) Any component of displacement.
(c) Any of the principal stresses or strains.
(d) Maximum shear stress or maximum shear strain.
(e) Effective stress (Von Mises) or maximum shear stress (Tresca).

Being 12 independent components of stress and strain, 3 displacement vectors, 3
principal stresses and 3 principal strains and 1 effective stress, there are 22 possible
data outputs per node. As it can be foreseen, even a fairly small FEM simulation
produces a massive set of data that are practically impossible to read and analyze if
they are displayed in tables, this is why the results of a FEM mechanical behavior
simulation are usually presented in the form of maps with colored contours painted
on the geometric model, as shown in the example of Fig. 2.17, where each color
represents a value range of the output variable. By consensus, red is assigned to the
maximum values and blue for the smallest or most negative values. The con-
struction of these graphics is called post-process and it is usually automatically
done by the FEM software for the variable selected by the user. The user can also
select the view perspective, like isometric, plant view or any cross section cut, as
well as make zooms and rotations of the image to observe in more detail the results.

Another advantage of modern commercial FEM software is that it allows the
making of animations in which the development of the stress or strain fields, or
displacement movements can be observed, as the increasing loads are applied.
Nonetheless, any FEM mechanical behavior simulation should be complemented
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with an analysis of results done by an expert, where it is verified whether the output
data is within the expected range of values, for example, no stress should be higher
than the ultimate tensile strength or there cannot be negative values of the von Mises
effective stress, additionally it should be verified if the results are congruent from the
theoretical point of view or from the reviewer’s experience. Finally, it is a good
practice to verify the results of a FEM simulation against experimental measurements,
either from in-service measurements of from bench-laboratory models, especially if
the analysis of the mechanical behavior analysis is part of a large scale project.

2.8 Experimental Measurement of Stress and Strain

Experimental measurement of stresses and strain can be done by several direct or
indirect techniques, however, in the present textbook, only the two ones that are
mostly used in engineering applications are described, being these electric resis-
tance extensometry and polaroscopy.

Electric resistance extensometry measures the elongation strain on a surface by
means of measuring the change of electric resistance of a very fine wire, which
electric resistance varies with the change of length. The wire is placed over a rigid
polymer base plate that is glued with a strong adhesive to the surface of the body
where the deformation is to be measured. This device is known as strain gauge and
it has the configuration depicted in Fig. 2.18. The strain gauges may come in one,
two, three or more element configurations, and may be especially design for crack
analysis, shear strain, pressure sensing of bolt spindle power measurement.

Fig. 2.17 Typical display of FEM results as contour map of stress ranges. Von Mises stress
values in MPa. Image courtesy of Manuel Alejandro Beltrán Zúñiga
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The strain gauge electric resistance is determined by the following equation:

R ¼ q
s

 �
l

where q is the wire resistivity, usually made of a copper-nickel alloy, s is the cross
section area of the wire and l is the grid length of the strain gauge. The change of
resistance is done by a Weatstone bridge circuit, which is depicted in Fig. 2.19,
where a power source introduces a constant voltage and a high precision volt-meter
measures the output voltage, which is then converted into electrical resistance
change. Since the equipment measures the change of resistance (DR) with respect to
the initial resistance (R), the measurement directly gives the strain, by applying the
following equation:

e ¼ 1
k
DR
R

where k is the strain gauge constant, which is provided by the strain gauge
manufacturer.

Fig. 2.18 Typical drawing of a single strain gauge. Image taken from: www.showa-sokki.co.jp

Fig. 2.19 Weatstone bridge circuit used to measure the strain by electric resistance change
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It is important to mention that electrical resistance extensometry is a differential
measurement technique, thus it measures the change of strain with respect to an
initial value. So, in order to measure the absolute value of strain, the strain gauges
must be installed on the unloaded body, then, the measuring circuit is set to zero
and the load is applied to measure the absolute value of strain. An advantage of
electrical resistance extensometry is that, even the most economic commercial
apparatus have a precision of 10−6, therefore, this is a very precise technique. If the
instrument features a high frequency data acquisition device, dynamic strain
measurements can be made, for example, in vibrating machinery or under cyclic
load conditions. Figure 2.20 shows the typical aspect of an electric extensometry
device and a set of strain gauges installed on a steel pipe.

When single strain gauges are used, the normal stress can be calculated directly
from the Hooke’s law, which is expressed as:

r ¼ E e

where E is Young Modulus. If sets of three strain gauges (called rosettes) are used
the principal strains and stresses are calculated by the following equations:

e1;2 ¼ ea þ ec
2 � 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � ebð Þ2 þ eb þ ecð Þ2

q

r1;2 ¼ E
2

ea þ ec
1�v �

ffiffi
2

p
1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � ebð Þ2 þ eb � ecð Þ2

q� �

When it is desired to measure plastic strain, the strain gauges should be espe-
cially designed for this purpose, since the post-yield behavior is not linear, so it is
important to ensure that the strain gauge’s range is sufficient to measure the
expected elongation plastic strains. Another important concern is the effect of strain
gauge bonding and wiring on the stress-strain curve of the material, as well as

Fig. 2.20 Electric extensometry measuring apparatus and strain gauges installed on the surface of
a steel pipe
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considering anisotropy and plastic strain-induced heating and finally, it must be
remembered that plastic strain measurement requires the knowledge of the true
elastic-plastic strain curve.

The main disadvantage of electric extensometry is that it makes measurements
on the free surface, so it only determines plane strain, the second disadvantage is
that the measurement is local, only over the area where the strain gauge is placed, so
in order to measure a strain field, it is required to install several strain gauges
strategically placed to determine the strain field.

Polaroscopy or also known as photoelasticity is an indirect method to measure
shear stress. It is based on the birrefrigency property of certain transparent mate-
rials, which is having a double refraction index. The property of birrefringency
produces a pattern of stripes or fringes when the materials that exhibit this property
are stressed and observed with a visor of polarized lenses known as “polaroscope”.
The interpretation of this technique is direct because the photoelastic image clearly
shows that where the stress concentrate the fringe density is higher. Figure 2.21
shows an example of a photoelastic fringe pattern of a stressed material and a
commercial polaroscope.

The procedure of photoelasticity stress measuring consists in making a bir-
refringent material model of the piece or by applying a birrefringent coating over
the area of the actual piece where the mesurement is desired, then the loads are
applied and the piece is observed with a polaroscope. The maximum shear stress
(smax) is determined by the equation:

smax ¼ Nk
2tC

where N is the number of stripes, k is the wave length of the illumination source, t is
the thickness and C is the stress optic coefficient. The value of C is usually provided
by the birrefrigent material supplier.

Fig. 2.21 Fringe pattern of a stressed birrefringent material and a commercial polaroscope
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The main disadvantage of photoelasticity is that it only allows measuring shear
stresses and in the case of coating use, the measurement is superficial and it requires
a careful surface preparation. Regardless of these limitations, the photoelasticity
method is quite useful to improve designs because it immediately detects stress
concentration zones.

2.9 Hardness

Hardness is most widely used mechanical test for evaluating the mechanical strength
of materials, however hardness is not a fundamental material property, at least in the
strict sense, since it depends on a combination of several fundamental mechani-
cal properties, such as the elastic modulus, the tensile and yield strength and the strain
hardening exponent, among others. Since the first days of engineering, hardness has
been defined as the resistance of amaterial to be scratched or penetrated. For structural
and material engineers, hardness is the resistance to plastic deformation, while for
mechanical engineers, is the resistance to machining and wear.

The hardness scale for scratching resistance used for minerals was introduced by
Mohs in 1822 and it is a relative scale, being 1 for the softest material (Talc) and 10
for the hardest (Diamond), however, the hardness test for engineering materials,
regarded as the resistance to permanent indentation, was introduced by the Swedish
engineer Johann A. Brinell. The test, known today as the “Brinell Hardness Test”,
and it is described in the ASTM E10 standard, and consists of a ball penetrator,
made of very hard material (hardened steel or tungsten carbide), which is pressed on
a clean and smooth surface of the test material. A pre-determined load is applied
during a standard time, usually 30 s and the size of the indentation mark is mea-
sured. The softer the material, the wider the indentation. Soon after the introduction
of the Brinell test, the Vickers test using a diamond pyramid indenter was intro-
duced (the Vickers hardness test method is described in the ASTM E92 standard).
Brinell hardness (BHN) and Vickers hardness (VHN) are both based on the mea-
surement of the size of the indentation mark, using the following formulas:

BHN ¼ 2L

pDð Þ D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � d2

ph i ; VHN ¼ 1:584L
d2

where L is the load in kilos, D is the diameter of the spherical penetrator in
millimeters, and d is the diameter of the mark in millimeters.

In 1919, a Hartford, Connecticut, heat-treatment engineer named
Stanley P. Rockwell introduced a more practical hardness test based on the mea-
surement of the depth of the indentation produced by a constant load penetration,
such method carries his name and it is described in the ASTM E18 standard. The
typical Rockwell scales are: A, with a 60 kg load and 120° diamond penetrator; B,
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with a 100 kg load and 1/16″ steel ball penetrator; and C, with 150 kg load and
120° diamond penetrator. To carry out the test, a 10 kg preload is first applied in
order to settle the penetrator, then the test load is applied and the device measures
depth of the indentation. Each Rockwell scale contains 100 divisions corresponding
to a 0.00008″ (2.032 micron) deep each one.

While Brinell and Vickers scales are applicable to the whole range of hardness
values of metallic materials, Rockwell scales have a limited applicability according
to the estimated hardness value. Figure 2.22 shows a comparison of the different
hardness scales and groups of materials that exhibit a particular range of hardness
values. It can be observed that Rockwell B scale is appropriate for non-ferrous
metals and low strength steels, whereas Rockwell C scale is useful for hardened
steels and cutting tools.

Despite its limited application range, Rockwell hardness is the most widely used
hardness test in industry because it is faster and more precise than Brinell and
Vickers scales. The Vickers hardness test has been adapted to use loads no greater
than 1 kg, allowing to make very small indentations called “microhardness”
testings.

Fig. 2.22 Comparison of
hardness scales
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As mentioned before, hardness is a complex material property that involves a
non-uniform distribution of stress and strain, as seen in the MEF model of
Fig. 2.23. As seen in this figure, the material deforms plastically beneath the
indenter, forming a plastic zone that is surrounded by an elastically strained zone,
thus the hardness value depends primarily on the Young’s modulus, the tensile
properties and the strain hardening behavior. Logically the friction between the
indenter and the test material surface plays an important role, so the measured
hardness value depends on the surface finish condition, lubrication and other fac-
tors. In spite of this, due to its simplicity, quickness and economy, the hardness test
is widely used in engineering for materials selection, quality control and to assess a
specific resistance such as wear, fatigue and stress corrosion cracking susceptibility,
just to mention a few.

For carbon steels, of mid and low alloy and thermally treated steels, the Brinell
hardness number can be related directly to the tensile strength, based on the fol-
lowing relation:

rmax ksið Þ ¼ 0:5 HBN

Likewise, semi- quantitative relations can be established with ductility and the
yield strength (the greater the hardness, greater r0 and less ductility), thus, hardness
can be also used as nondestructive test to investigate the condition of an in-service
component, which is quite useful in structural integrity assessments and failure
analysis.

Because of the necessity to perform in-field hardness measurements, a variety of
portable hardness measuring techniques have been introduced since the middle of
the XX century, among which outstand the following:

Fig. 2.23 Distribution of Von Mises stress in ksi calculated by the finite element method in a
Brinell hardness test. Image courtesy of Manuel Alejandro Beltrán Zúñiga
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Telebrineller. It is a commercial brand that uses a device consisting of an anvil,
a steel pattern bar and a hardened steel ball. The ball is placed onto the body whose
hardness is to be measured while the opposite side rests on the pattern bar, over
which the anvil is placed. The anvil receives a strong hit with a mallet and then the
diameters of the marks on the piece and the pattern bar are measured using a field
microscope. Since the pattern bar hardness is known, the hardness of the piece is
determined by a rule of three.

Leeb method. Introduced by Leeb and Brandestini in 1975, it is based on the
measuring of the backward speed of a sphere driven by a electromagnetically con-
trolled spring after impacting the test surface. Hardness is proportional to the differ-
ence between the speed of impact and the bounce back speed of the sphere. Since
1996, this method is ruled by standard ASTM A956 and the commercial equipment
feature resulting values in the conventional scales Brinell, Vickers and Rockwell.

TIV Method. It stands for Through-Indenter-Viewing, is a method that mea-
sures Vickers hardness and consists of an optic device that allows to visualize
directly the penetration of a diamond indenter on the test surface. Such device
applies a pre-determined and calibrated load so that the mark size, measured
directly on the device’s LCD screen, is converted directly into Vickers hardness or
into any other scale, by an on-board computer, at user’s discretion.
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Chapter 3
Plastic Deformation Mechanisms

Abstract This chapter begins with an introduction of the crystalline structure and
crystalline defects of solid materials and the definition of hot and cold work. Then,
a full description of the dislocation slip mechanism is presented, including an
explanation of the direct observation of dislocations by transmission electron
microscopy. Based on the preceding ideas, a description of the slip modes and their
associated dislocation substructures is given. The chapter concludes with a brief
description of the plastic deformation mechanism by twinning.

3.1 Crystalline Defects and Deformation Mechanisms

Thanks to the works of the physicists Max Von Laue from Germany and the
British W. H. Bragg and W. L. Bragg, in 1913, it is known that most engineering
metals and alloys are crystals. A crystal is a solid whose atoms are arranged in an
order formed by the repetition of a unitary geometry that extends throughout the
solid. This idea was proposed by the self-taught English scientist William Barlow in
1883, based on the ideas of the French physicist Auguste Bravais, who introduced
in 1848 the field of crystallography, describing the unitary cell, a term given to the
geometric unit that repeats in a crystalline solid, being also the symmetry-unit that
defines the type of crystalline structure. The most important crystalline structures,
called Bravais lattices, are shown in Table 3.1

The ordered repetition of a group of unitary cells in a solid is called lattice.
Lattices are tridimensional, so each plane and direction in the cell unit is defined by
a vector, described by the Miller indexes, (Miller’s notation can be found in text-
books of Materials Science or Crystallography). Figure 3.1 illustrates these con-
cepts in two dimensions for further simplicity.

Soon after discovering the crystalline structure, it was found that the crystalline
lattices in natural and engineering materials are not perfect; but rather contain flaws
called crystalline defects. The most common types of crystalline defects are listed in
Table 3.2 and a schematic representation of them is shown in Fig. 3.2.

© Springer Nature Switzerland AG 2020
J. L. González-Velázquez, Mechanical Behavior and Fracture of Engineering
Materials, Structural Integrity 12, https://doi.org/10.1007/978-3-030-29241-6_3

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29241-6_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29241-6_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29241-6_3&amp;domain=pdf
https://doi.org/10.1007/978-3-030-29241-6_3


www.manaraa.com

Evidently, the plastic deformation of solid materials is closely related to the
crystalline structure and its crystalline defects. The sequence of events that produce
plastic deformation in solids is called deformation mechanism. At this point it is
necessary make clear that the elastic deformation mechanisms is just the result of
the stretching or shortening of atomic links, therefore it is quite straight forward,

Table 3.1 Common crystalline structures in solid materials

Structure
P = Primitive, I = Body centered, F = Face
centered

Material

Cubic Face centered cubic (fcc): Cu, Ni, Al, Fe-c,
Au, Ag.
Body centered cubic (bcc): Fe-a, Mo, W.

Tetragonal Fe3C, Martensite (a′)

Orthorombic Marcasite, Olivine, Aragonite

Hexagonal Compact hexagonal (hc): Cd, Mg, Ti, Zn

Monoclinic Gypsium, Orthoclase

Triclinic Tantite, Wollastonite
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and requires no further study, whereas plastic deformation mechanisms involve the
rearrangement of particles within the solid, including defects movement, all of
which make them very complex.

3.2 Definition of Cold and Hot Work

Before studying the deformation mechanisms, it is convenient to bear in mind that
the mechanical behavior of engineering materials is strongly influenced by the
temperature, and metallic materials may feature two types of behavior with respect
to it, referred as: low temperature or cold work, and high temperature or hot work.
The main difference is that at high temperature, the deformation mechanisms
involve time-dependent thermally activated processes such as diffusion and viscous

Unit cell

Plane Plane 
normal

DirectionFig. 3.1 Schematic two
dimensions representation of
a single cubic crystal lattice

Table 3.2 Classification of
crystalline defects

Type Defect

Punctual • Vacancies
• Substitutional impurity atom
• Interstitial impurity atom

Lineal • Dislocations–perfect [edge, screw and mix]
• Partial dislocations

Planar • Stacking faults: Intrinsic y extrinsic
• Twin boundary
• Grain boundary

Volume • Precipitates

Dislocation 

Stacking fault

b
Sustitutional 
defect

Interstitial 
defect

Twin

PrecipitateVacancy

Fig. 3.2 Schematic representation of main crystalline defects
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flow, whereas at low temperature, deformation occurs by processes that are inde-
pendent of time. The difference between hot and cold work is exhibited in the
tension stress-strain curve, as the absence of strain hardening in hot deformation, in
addition to reduction of the elastic modulus, yield strength and ultimate tensile
strength, as schematically shown in Fig. 3.3.

The parameter to determine whether it is hot or cold work is the homologous
temperature, which defined as:

H ¼ T=Tf

where H is the homologous temperature, T is the work temperature in absolute
degrees and Tf is the material’s melting point absolute temperature (in Kelvin). The
most widely accepted criterion is:

If H[ 0:4; it is hot work

If H\0:4; it is cold work

However, the value of H that determines the transition from cold work to hot
work is not a fixed one, but it is rather a range of values. Furthermore, since H
depends on the melting point, the condition of hot work does not necessarily
indicate that the material is at a temperature much higher than room temperature, as
shown in the following example:

Example Determine the H value steel and a Pb–Sn alloy at room temperature
(25 °C, 298 K)

For steel: Tf = 1600 °C = 1873 K, thus: H = 298/1873 = 0.16
For the Pb–Sn alloy: Tf = 200 °C = 473 K, thus: H = 298/473 = 0.63
Notice that at room temperature, steel is in cold work whereas the Pb–Sn alloy is

hot work condition.

Cold work

Hot work

Stress ( (

Strain (  )

σO

σO

Fig. 3.3 Tension Stress–
Strain curve of hot and cold
work
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3.3 Deformation by Dislocation Slip

In March, 1899, Ewing and Rosenhain, from St. John’s College, Cambridge,
published a short paper, where they reported observations through the metallo-
graphic microscope, of the polished surface of a metal strip stretched up to reaching
plastic deformation. They observed fine parallel dark lines within the grains, that
increased in number and new line systems appeared in different directions, as the
specimen was stretched further. After performing a crystallographic analysis, they
concluded that the lines were actually tiny surface steps produced by the slip of
crystalline planes, as shown in Fig. 3.4. Such lines were called slip lines and it was
concluded that plastic deformation in metals is caused by the slip of crystalline
planes.

Later on, it was demonstrated that slip occurs in specific crystallographic planes
and directions for each crystalline structure, where the slip direction is always
parallel to the slip plane. The combination of plane and direction of slip is called
slip system. The slip systems of the main crystalline structures of engineering
metals and are shown in Table 3.3.

Notice that the bcc structure has a greater number of slip systems than the fcc,
but metals with fcc structure are usually more ductile. This is because the slip planes
in fcc metals are more compact than those in bcc metals, thus facilitating slip. Once
experimentally demonstrated that plastic deformation occurs by the slip of

Step
Crystalline 
direction
<mnp>

Crystalline plane
{hkl}

Fig. 3.4 Slip lines on a polished surface as seen in the metallographic microscope and schematic
representation of the formation of a surface step by slip

Table 3.3 Main slip systems
of common crystalline
structures

Structure Planes Directions No. of systems

fcc {111} <110> 12

bcc {111}
{112}
{123}

<111> 48

hc {0001} <1120> 3
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crystalline planes, the next step was to calculate the stress necessary to produce the
slip of an atomic plane over another one. Such estimation was done by Frenkel in
1926 by the following procedure:

Consider a model of two parallel rows of atoms as shown in Fig. 3.5, when the
upper row of atoms moves over the one below, the shear stress varies according to
the following equation:

s ¼ s0 sin
2px
b

� �

For small values of the argument (2px/b), the approximation sin h = h is valid,
therefore the previous equation can be simplified as:

s ¼ s0
2px
b

� �

On the other hand, the shear deformation may be calculated as:

c ¼ x
a

Before the upper row of atoms reach the position x = b/4, it can be assumed that
the deformation is elastic, thus the shear elastic deformation is:

s ¼ Gc ¼ Gx
a

Slip plane

Slip direction

b

a

x = 0 x = b
x = b / 2

Atom 
displacement

Start End
τ

x0
b/4 b/2 b

τo Critical shear stress.

Fig. 3.5 Slip model in a perfect lattice to determine the stress necessary to produce slip
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Therefore:

Gx
a

¼ s0
2px
b

� �

Taking a = b (as typical in cubic crystals) and solving for s0, the theoretical
shear stress for slip in the perfect lattice is obtained:

s0 ¼ G
2p

The typical values of G for metals range from 6000 to 70,000 MPa (106 to 107

psi), thus calculating s0 with the previous equation, the resulting values are, from
100 up to 10,000 times higher than those obtained experimentally, which are in the
range of 7–2000 MPa (103 to 3 � 105 psi). The discrepancy between the theo-
retical and experimental slip stress values does not disregard slip as the plastic
deformation mechanism, since it is an experimental observation, but instead it
implies there must be “something” that helps slip to occur at a much lower stress.

In 1905, the Italian scientist Vito Volterra developed the dislocation theory, from
which, later in 1934, Orowan, Taylor and Polanyi, each one separately, proposed
that slip could be the result of dislocation movement. Orowan is the most recog-
nized dislocation scientist in the world, but it is Taylor’s model that more clearly
illustrates how the dislocation movement can be responsible of the slip. The
Taylor’s model of slip is based on an edge dislocation, which is characterized by a
Burger’s vector (b) parallel to the dislocation plane, as shown in Fig. 3.6.

To demonstrate that the slip mechanism is caused by dislocation movement, the
following conditions must be meet:

1. Dislocation movement must produce plastic deformation.
2. Dislocation movement must occur in directions over a plane and produce sur-

face steps.
3. Dislocation movement must take place at a stress lower than the theoretical one.

The following mechanism demonstrate conditions 1 and 2: By applying a shear
stress parallel to the Burger’s vector, the atomic bonds unbalance, as shown in
Fig. 3.7a, this makes the dislocation move forward one atomic position in the

b
Fig. 3.6 Edge dislocation
with Burgers vector in
equilibrium position
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lattice, Fig. 3.7b. By holding the stress, the dislocation keeps moving and shears the
crystal until it reaches a free surface, where a step is formed, as seen in Fig. 3.7c.
An analog behavior is produced by a shear stressed screw dislocation, as shown in
Fig. 3.8. The models depicted in the previous figures demonstrate that indeed the
dislocation movement is consistent with the characteristics of plastic deformation
by slip observed experimentally.

The shear stress to move a dislocation was calculated by Pierls and corrected by
Nabarro in 1947, and is given by the equation:

sdis ¼ 2G
ð1� vÞ

� �
exp

�2pw
b

� �

where: v is Poisson’s ratio, b is Burgers vector, w is the dislocation width, defined
as the distance up to which the dislocation distorts the crystal and G is the shear
module. This equation combines the elastic stiffness, given by G, while the
exponential term is related to an energetic barrier that has to be surpassed in order to

τ

The bond becomes unstable 
due to the shear stress

Dislocation 
movement

Bond
Step

Free 
surface

(a) (b) (c)

Fig. 3.7 Taylor’s model showing that slip can be produced by the movement of an edge
dislocation

Shear stress

b

Fig. 3.8 Crystal slip produced by the movement of a screw dislocation
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reach an equilibrium state of lower energy. It has been estimated that w = 10b in
ductile metals and w = 2b in brittle metals, thus if: G = 11 � 106 psi, v = 0.35 and
w = 5b:

sdis: ¼ f2 11� 106
� �

= 1� 0:35ð Þg expð�10pÞ ¼ 7:68� 10�7 psi

This calculation shows that an extremely low stress is required to move a dis-
location, but now it is necessary to explain how the dislocation movement reach the
experimentally observed yield strength. What actually happens is that a very large
number of dislocations has to be moved in order to achieve a significant amount of
plastic strain, in addition to the fact that dislocations have to overcome obstacles,
which altogether, increases the stress necessary to produce the slip.

The estimation of the number of dislocations necessary to plastically strain a
crystal by slip can be done by the following reasoning: Consider an originally
rectangular crystal, of h height and L length, which is deformed by a group of
dislocations moving in parallel planes, as depicted in Fig. 3.9.

If the total shear displacement (D) produced by the group of dislocations is the
sum of the individual displacements produced by each single dislocation, then:

D ¼ b
P

xi
L

� �

where x is the slip distance of each individual dislocation, L is the crystal width and
b is Burgers vector. On the other hand, the shear strain is equal to:

c ¼ D=h

Substituting D into c:

c ¼ b
hL

X
xi

h

L
b

ΔFig. 3.9 Two dimensional
model to estimate the number
of dislocations necessary to
produce a significant shear
strain
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Introducing the average slip distance (xav) given by:

xav ¼
P

xi
N

where N is the number of dislocations crossing the crystal and combining the
previous equations, the total strain produced by the dislocations is:

c ¼ bxav
N
hL

� �

The term (N/hL) is called dislocation density and is represented by the symbol
qdis, thus the shear strain produced by the dislocation movement is:

c ¼ bqdisxav

The following example gives an estimation of the dislocation density required to
produce an appreciable plastic deformation.

A 1 cm per side cubic crystal, where b = 3 � 10−8 cm strains at c = 0.1.
Calculate the associated dislocation density.

Solution If the spatial distribution of the dislocations within the crystal is random, it
may be assumed that the average slip length is one half of the crystal width
xav = 0.5 cm. Taking b = 3 � 10−8 cm, and solving for qdis:

qdis ¼ c=b x ¼ 0:1ð Þ= 3� 10�8 cm
� 	

0:5 cmð Þ ¼ 6:7� 106 Dislocations/cm2

This example shows that a great number of dislocations is required in order to
deform a crystal. In fact, it has been experimentally determined that heavily cold
worked materials have dislocation densities in the range of 1012 to 1014

Dislocations/cm2. Obviously, such number of dislocation does not initially exist,
because deformation-free crystals have dislocation densities of 103 to 104

Dislocations/cm2 and this amount is not sufficient to produce an appreciable plastic
deformation, therefore, there must be mechanisms to generate high numbers of
dislocations in order to plastically deform a crystal.

The best known mechanism of dislocation multiplication is the Frank-Read
source, which is schematically described in Fig. 3.10; its mechanism is as follows:

1. A dislocation segment is pinned between two obstacles.
2. Under the action of a shear stress on the slip plane, the dislocation starts to bow

out up to a critical curvature, then, the ends of the loop attract each other,
because they are of opposite signs, forming a dipole (a pair of opposite sign
dislocations close to each other).
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3. When the dislocation segments of the dipole are close enough, they collapse and
the original dislocation is regenerated while the remaining segment of the loop
forms a ring around the original dislocation.

4. The regenerated dislocation segment can continue generating new dislocation
loops, while the dislocation loops can slip further into the crystal. This mech-
anism can repeat continuously until the crystal is saturated with dislocations. In
fact, Frank and Read source is considered to be inexhaustible.

Slip strain rate: Although it has been said that cold work is independent of time,
it actually occurs at certain rate, because the dislocations take some time to move
through a crystal once a shear stress has been applied on the slip plane. The strain
rate can be determined in the following way:

The shear strain rate (dc/dt) can be determined by the total derivative:

dc
dt

¼ bqdis
dx
dt

� �
þ bx

dqdis
dt

� �

In the above equation, the term (dx/dt) is the dislocation slip rate, and the term
(dqdis/dt) is the dislocation multiplication rate, which is the amount of dislocations
that have to be generated in order to obtain certain plastic deformation. At high
strains, the crystal saturates with dislocations and (dpdis/dt) comes close to zero, so
the strain rate remains only in terms of slip rate:

dc
dt

¼ bqdis
dx
dt

� �

τR

Slip plane

Critical 
radius RC

(+)

(-)

Critical 
curvature:
τR = Gb/2R

Dislocation 
anchored by an 

obstacle

Dipole 
collapse

New
dislocation 

ring 

Dipole

Fig. 3.10 Frank-Read source of dislocation multiplication
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Experimentally, it has been found that:

dx
dt

¼ Asm
0

where A and m′ are material’s constants, thus:

dc
dt

¼ bqdis Asm
0


 �

The previous equation indicates that the strain rate depends on the applied stress.
Experimentally, it has been observed that when a crystalline material is deformed at
high strain rates, the flow stress increases proportionally to the strain rate, while
ductility is reduced, as shown in Fig. 3.11.

Resolved shear stress. Resolved shear stress (sR) is the shear component of a
normal stress which actuates directly onto a slip plane. It is calculated from the
applied tensile stress (P/A), as shown in the diagram of the Fig. 3.12.

sR ¼ P cos /
A

cos k

¼ P
A
cos/ cos k

where the term cos/ cos k is called the Schmid Factor, therefore:

sR ¼ r cos/ cos k

When sR is sufficiently high as to initiate slip, it is called critical resolved shear
stress (sRC). Therefore, in a single crystal:

Strain rate 
increment

St
re

ss
  (

)

Strain ( )

σO

σO

σO

Fig. 3.11 Effect of the strain
rate on tension behavior
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sRC ¼ r0 cos/ cos k

where ro is the single crystal yield strength. When there are several active slip
systems, slip will begin in the system with the highest Schmid Factor. If the Schmid
Factor value is zero, the dislocation slip is impossible in such system.

Example An fcc single crystal is tension stressed along the [123] direction.
Determine which slip system is first one to be active.

Solution A free-body diagram of the single crystal is:
Stress direction

[123]

hkl Slip plane
{111}

Slip direction
<110>

Plane 
normal

The slip systems are:

111ð Þ 110½ �
111ð Þ 101½ �
111ð Þ 110½ �

In a cubic crystal, the angle between planes or directions is calculated by:

cos / ¼ hkl½ � � mnp½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 þ p2

p

N

θ τR

σ =P/AN

σ

λ
φ

τR

Fig. 3.12 Definition of
resolved shear stress
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For the (111) slip plane and the [123] stress direction:

cos k ¼ 1� 1þ 2� 1þ 3� 1ð Þ=ðp14
p
3Þ ¼ 6=

p
42

For the slip direction [110] and the stress direction [123]:

cos/ ¼ 1� 1� 1� 2þ 0� 3ð Þ=p14
p
2 ¼ �1=

p
282

The Schmid Factor is:

FS1 ¼ ð6=p42Þ � ð�1=
p
28Þ ¼ �0:175

For systemNo:2 : FS2 ¼ �0:35
For systemNo:3 : FS3 ¼ 0:52

Thus, system (111)[110] is the first to become active.

3.4 Direct Observation of Dislocations

The theory of dislocations succeeded in describing the plastic deformation mech-
anism of crystalline solids, even when dislocations had not been directly observed.
The concept of dislocation was introduced by Volterra in the first years of the XX
century, in those days the dislocations were observed in bubble rafts, stacks of
pipes, block walls, and so forth. However, for over 40 years after the dislocation
theory was published the direct observation of dislocations in engineering materials
was not possible, until the work done Hirsch and collaborators in 1956, using the
newly developed transmission electron microscopy technique.

Transmission electron microscopy (TEM) consists of an electron beam accel-
erated by hundreds of kilovolts, that is focused by magnetic fields that work as
lenses to pass-through a thin foil of the material to be examined (typically of less
than 1000 Angstroms thick). The hollow column that contains the electron beam
must be at high vacuum to prevent air molecules from deflecting the beam. The
electron beam, after passing through the specimen, is amplified and projected on a
fluorescent screen placed on the lower part of the column, which can be observed
through a transparent window. Figure 3.13 shows a scheme of a TEM.

The Bragg law states that the planes at an angle h = sin−1(k/2d), where k is the
electron beam wave length and d is the interplanar distance, will diffract the electron
beam. At high voltages, k has a very small value (3 � 10−12 m at 100 keV), so
only those planes closely parallel to the beam will diffract. Therefore, when an
electron beam passes through a crystal having a dislocation, the slight change of
inclination of the planes produced by the dislocation will cause diffraction of the
electron beam, then by eliminating the diffracted beams with an aperture plate
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placed just below the objective lens, a shadow will be observed in the exact same
location where the dislocation line lies. This is schematically illustrated in
Fig. 3.14.

Figure 3.15 shows an image of dislocations in an fcc metal, obtained with a
TEM in bright field, meaning that the image is formed by the transmitted beam and
eliminating the diffracted beam. The dislocation lines look wavy due to the
ondulatory nature of electron diffraction, therefore if the crystal is tilted, the dis-
location line shape may vary, or it may become invisible. The TEM images of
dislocation lines are the segments that go from top to the bottom of the thin foil, and
since the image is a bi-dimensional projection of a tri-dimensional space they look

Cathode
Anode

Condenser lens

Objective lens

Projector lens

Specimen

Aperture plate

Screen

High vacuum column

Fig. 3.13 Schematic construction of the transmission electron microscope

Incident beam

Transmitted beam

Diffracted beam

Aperture plate

Fig. 3.14 Contrast
mechanism that makes a
dislocation visible in the TEM
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short, as shown in Fig. 3.15. It is important to mention that, at a first glance, it
cannot be determined which end is up or down.

3.5 Slip Modes

As it was seen before, plastic deformation is the result of the movement of a large
number of dislocations over several crystallographic planes and directions, so there
is a large number of interactions among single dislocations, as well as, among
dislocation groups, which makes slip a complex phenomenon. The overall result of
these interactions within a crystal is a particular configuration of dislocation groups,
called dislocation array, which greatly influences the mechanical behavior of
materials.

There are two basic modes in which a group of dislocations may move in the
interior of a crystal, they are called slip modes and are described as follows:

Planar slip—In close-packed crystals, the dislocations tend to dissociate into
partial dislocations that stay in the plane they were formed so they make up parallel
aligned bands of dislocations. When the dislocations bands meet an obstacle, the
distance between individual dislocations diminishes as they approach to the obstacle,
thus producing arrays called pile ups, which look like the example shown in Fig. 3.16.
Planar slip produces straight and well defined slip lines, as shown in Fig. 3.16.

Planar slip occurs is typical in fcc crystals, since a dislocation splits into two
partial dislocations that have an associated stacking fault between them, that makes
impossible for the dislocation to move out of the slip plane. The mechanism of
partial dislocation formation in a fcc crystal is depicted in Fig. 3.17. To move on the
(111) plane, a perfect dislocation must follow the [101] direction, thus, the dark
atom must go over the gray atom. It is easy to see that the path around the gray
atom, given by the directions a/c[112] and a/c[211] is more favorable, so the
dislocation “splits” into two partials, forming a stacking fault, as shown in
Fig. 3.18.

Top

Bottom

Fig. 3.15 Tri-dimensional lay out of dislocations segments on a thin foil and bi-dimensional
projection image as seen in the TEM. Image courtesy of Dr. Héctor Dorantes R
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It is clear that stacking faults cannot change from one plane to another, so the
partial dislocations are forced to stay on the planes where they were formed,
favoring planar slip. The wider the stacking fault is, the less likely that a partial
dislocation close. The separation of a stacking fault between two partial dislocations
is result of the work balance between the rejection force of the partials (because

Fig. 3.16 Dislocation bands and straight slip lines produced by planar slip

(111) 
plane

a/c [211]
a/c[112]

[101]

b = [101]
Slip plane

(111)

Fig. 3.17 Geometric model of an edge dislocation b = [101] in a (111) plane in a fcc crystal,
showing the split into two partial dislocations b = [112] and b = [211]

First 
partial

Second 
partial

Stacking fault

Fig. 3.18 Schematic representation of two partial dislocations with a stacking fault between them.
The striped bands are stacking faults between partial dislocations as seen in the TEM
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they are of the same sign) and the stacking fault energy (SFE). The calculation of
the stacking fault width is as follows:

The rejection force Fre between two partials is given by the following equation:

Fre ¼ G
b1b2
2pl

where l is the separation between partial dislocations and b1 and b2 are the corre-
sponding Burgers vectors. The SFE is an energy by surface unit, therefore, the work
necessary to form it is:

SFE ¼ Fre lð Þ

Substituting F and solving for r, an equation to calculate l is obtained:

l ¼ G
b1b2
2pSFE

This equation indicates that the lower the SFE, the wider the stacking fault
between two partial dislocations and so it is more difficult to close them, which
favors planar slip. Substitutional solid solutions usually feature lower SFE, thus
metal alloys with fcc structure like stainless steels, bronzes, brasses and nickel
alloys exhibit planar slip.

Wavy slip—Under normal circumstances, it is quite likely that a dislocation
may change of slip plane, this is termed cross-slip. This is common in high SFE
materials, such as pure metals and interstitial solution alloys, because they do not
form partial dislocations and the single dislocations can cross-slip as long as their
Burgers vector is compatible between the original and secondary slip planes. The
slip lines produced when the dislocations cross-slip are diffuse and wavy, as shown
in Fig. 3.19, so that is why this slip mode is called wavy slip.

Cross slip allows dislocations to move more freely than planar slip, which leads
to the formation of complex dislocation arrays that evolve as the dislocation density

b
b

Secondary plane

Primary plane

Fig. 3.19 Cross- slip of a dislocation and wavy slip lines as seen in a metallographic microscope
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increases further. The evolution of dislocation arrays in the wavy slip begins with
the formation of tangles which are dislocation bundles separated relatively long
distances from each other. When the tangles get denser, the dislocation segments
get closer to each other, up to a point where they rearrange to form cells, that are
dense walls of tangled dislocations that surround or enclose low dislocation density
zones. Finally, at high deformations, the dislocation cells produce a sufficiently
large disorientation between neighboring zones, to lead to the formation of sub-
grains. Figure 3.20 shows the evolution of the wavy slip dislocation arrays as seen
in the TEM.

The planar slip mode favors anisotropy of the mechanical behavior, because the
plastic deformation is easier in the slip band directions, whereas wavy slip favors
more homogeneous and isotropic deformation. Materials with planar slip also
feature a more pronounced Bauschinger effect than materials with wavy slip
because of the high back stress generated in the dislocation pile ups.

The slip mode also affects recrystallization, which is the formation of new
deformation-free grains in cold worked materials after annealing, because the
introduced heat causes the rearrangement and annihilation of dislocation arrays.

Subgrains

Tangles Cells

Fig. 3.20 Evolution of wavy-slip dislocation arrays. Initially, tangles are formed, which evolve
into cells at higher deformation levels, up to a point where subgrains are formed
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In planar slip materials, the dense dislocation bands favor the formation of
annealing twins, and polygonal-shaped recrystallized grains, while in wavy slip
materials, the subgrains favor the formation of refined-grain microstructures.
Examples of the recrystallized microstructures of planar slip and wavy slip metals
are given in Fig. 3.21.

3.6 Deformation by Twinning

Even though dislocation slip is the predominant plastic deformation mechanism at
low homologous temperature, there are conditions where dislocation slip is not
favored or it is completely inactive. Some of the conditions that inhibit dislocation
slip are:

1. Few slip systems.
2. Unfavorable orientation of the slip plane (Schmid factor close to zero).
3. Strong obstacles.
4. High strain rates.
5. Very low temperatures (homologous temperature close to zero).

When any of these conditions is present, the twinning deformation mechanism
appears, which consists of the shear strain of an entire section of a crystal, produced
by the simultaneous movement of atoms in the sheared region. Figure 3.22 shows a
schematic illustration of twining. Deformation by twinning is common in hexagonal
metals such as magnesium and zinc, as well as on carbon steels, bronzes and other
metals deformed at ballistic speeds, since deformation by twinning occurs at micro
second rates, whereas slip rate is slower, in the order of milliseconds.

Twinning occurs on well-defined crystalline planes and crystalline directions,
known as twinning system. The twinning systems in common crystalline structures
are given in Table 3.4. Since twinning produces a region with different crystalline
orientation, with plane boundaries, they are clearly visible in a metallographic

Fig. 3.21 Recrystallized grains of an alloy with planar slip (left) and an alloy with wavy slip
(right). Left image taken from Metals 2017, 7(9), 348, https://doi.org/10.3390/met7090348
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preparation as straight bands across the grains. Deformation twins are fine and
numerous, as shown in Fig. 3.23, while annealing twins in planar slip metals are
formed by rearrangement of dislocation bands, forming coarser and less numerous
bands, as shown in Fig. 3.24.

The magnitude of deformation by twinning can be calculated according to Hall
(1954), by the following expression:

Dl ¼ 1� ð1þ S tan vÞ1=2
tan v ¼ 1=2 S�p

S2 þ 4ð Þð Þ

Table 3.4 Twinning systems
in common crystalline
structures

Structure Twinning
plane

Twinning direction S

fcc {111} <112> 0.707

bcc {112} <111> 0.707

hc {1012},
{1121}

<1011>, <1123>,
<1126>

0.139

Fig. 3.23 Deformation twins
as viewed in the
metallographic microscope

Shear 
deformation

τ

τ

Twin plane

Original lattice

Fig. 3.22 Plastic deformation of a crystal by twinning
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where Dl is the elongation produced by twinning and S is a constant that depends on
the structure and the twinning system (see Table 3.3). Based on this expression, the
maximum elongation attainable by twinning is about 32%, but the average values
obtained experimentally are rarely over 10%.

Twinning is rather unimportant as deformation mechanism because it occurs
under quite special conditions and the obtained plastic deformation is not high.
However, twinning is very important in the mechanical behavior, because by
changing the crystal orientation, it may place some slip systems in favorable slip
orientations and others on unfavorable orientations (i.e. low Schmid Factor).
Additionally, twins are strong obstacles to dislocation movement, so they contribute
to increase the mechanical strength.

Fig. 3.24 Annealing twins as
viewed in the metallographic
microscope
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Chapter 4
Strengthening Mechanisms

Abstract This chapter starts with an explanation of the concept of strength in
engineering materials to introduce to a detailed description of the most important
strengthening mechanism of metallic materials, being: strain, grain boundary, solid
solution, second phase and fine particle. These mechanisms are explained accord-
ingly to the dislocation theory and the most important rules, along with the relevant
equations such as the Hall-Petch law, the rule of mixtures, the interparticle spacing
strengthening relation and so on are introduced. The effects of second phase particle
shape and distribution on the mechanical strength of materials is discussed. The
upper yield strength and strain aging phenomena are described. Furthermore, the
martensite hardening behavior in steels is thoroughly described due to its techno-
logical importance.

4.1 Strengthening of Engineering Materials

Strengthening of materials can be understood as the increment of mechanical
properties on order to increase their capacity to bear loads and resist external forces
without failure; specifically, it is achieved by increasing the yield and tensile
strength, but without reducing, or better yet, increasing ductility. The property that
best describes strengthening is the toughness, which is the amount of work nec-
essary to deform a material up to fracture. Occasionally, strengthening is referred to
as “hardening” because hardness is directly related to the tensile strength, however
a material can be “hardened”, without necessarily make it stronger. For example, a
hard material such as quartz is not resistant to mechanical work, since it can be
easily broken with a hand hammer; on the other hand, materials termed as “high
strength” or “tough”, do feature high hardness values, but combined with high
ductility, which make them very strong and resistant to mechanical work. The
typical aspect of the tension stress-strain curve of hard, weak and high strength
materials is schematically illustrated in Fig. 4.1.

The strengthening of materials can be achieved in several ways, called
strengthening mechanisms, which all of them are related to the chemical
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composition and microstructure to make dislocation movement more difficult, but
not to be stopped at all.

The main strengthening mechanisms of engineering materials are:

1. Strain hardening.
2. Alloying.
3. Grain boundaries.
4. Second phases.

Additionally, all materials, whether they are metallic, polymers, ceramics or
bio-materials, can be macroscopically combined, in the form of a matrix providing
bulk and volume to the piece, and other material, usually of high strength that
provides the mechanical strength. These aggregates are called “composites”. Their
strengthening mechanisms will be treated separately in Chap. 5.

4.2 Strain Hardening

Strain hardening is the increment of the stress necessary to continue plastically
straining a material. Since strain hardening always comes with an increment in
hardness, but with a ductility reduction, it is adequate to say hardening instead of
strengthening for this mechanism. As mentioned in the previous chapter, strain
hardening is the cause of the curvature of the stress-strain plot and it is associated
with cold work. The strain hardening mechanism involves the interaction among
dislocations to generate obstacles that make slip more difficult. As plastic defor-
mation goes further, the dislocation density increases so it does the interactions
among dislocations, resulting on an increased difficulty to further deform the
material, which is precisely the strain hardening The absence of strain hardening
during hot work is attributed to the annihilation of dislocations by thermally acti-
vated processes, taking place at a sufficiently fast rate to prevent the interaction of
dislocations.

Weak

High hardness

High strength

σ

ε

Fig. 4.1 Schematic
stress-strain curves of a high
hardness, high strength and
weak materials
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The types of dislocation interactions that are acknowledged in strain hardening
are:

(1) Interaction of single dislocations.
(2) Interaction of dislocation groups.
(3) Interaction of individual and dislocation groups with obstacles.

In most engineering metals and alloys, strain hardening can be so intense that the
ductility can be almost totally suppressed, resulting in brittle behavior. As strain
hardening increases, the yield limit approach progressively the tensile strength,
while ductility is reduced, as shown in the graphs of Fig. 4.2. The term “%Cold
work” refers to the maximum plastic deformation attainable before the material has
a completely brittle behavior in the next load cycle.

As mentioned above, strain hardening is primarily caused by dislocation inter-
action, this is due to the fact that when two dislocations moving in different planes
intersect each other, a kink is formed in the intersected dislocation line segment, as
shown in Fig. 4.3. The dislocation kink has a Burgers vector different from the one
of the original dislocation, so, in an edge dislocation, the kink is of the screw type
and vice versa, and because the kink’s Burgers vector is off plane, it cannot slip
along with the dislocation.

Because the dislocation kinks cannot glide along with the dislocations on the
plane on which they were formed, they remain rigid (the term used in dislocation
theory is “glissile”), as the rest of the dislocation keeps on gliding, the segments
connected to the glissile segments curve and stretch, forming a pair of dislocation
segments of opposite signs separated a short distance, called dipolar tail. As the slip
continues, the dipolar tail stretches more and more, requiring a higher stress to

σ

εf 

Strain hardening
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ε

σuts

%∆l

% Cold work
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Fig. 4.2 Stress-strain curve of a metallic alloy with strain hardening and variation of the tensile
properties of a low carbon steel in terms of % of Cold work

4.2 Strain Hardening 105



www.manaraa.com

continue moving the dislocation, which appears itself as strain hardening. Finally,
when the dipolar tail cannot stretch anymore it collapses, leaving a wake of dis-
location rings which contribute to increase the dislocation density and consequently
the strain hardening. This process is schematically depicted in Fig. 4.4. Some
authors refer to the rings formed by the collapse of dipolar tails as “dislocation
debris”, which play an important role in other phenomena such as strain aging and
fatigue. Figure 4.5 shows a TEM image of a cold worked metal alloy where several
dipolar tails (shown with arrows) and dislocation debris can be seen.

The resolved shear stress to lengthen a dipolar tail can be estimated by the
following equation:

s ¼ aG b=L

where L is the dipolar tail length and a is a constant. Notice that the longer the
dipolar tail is, the less stress is required to lengthen it, but long dipolar tails will
collapse more easily, so a ductile material will harden slowly in the initial stages of
deformation, but as the crystal is being filled up with new dislocation rings, strain
hardening will increase, simply because more dislocations intersect to each other.

Intersection of edge 
dislocations

Intersection of 
screw dislocations

Fig. 4.3 Kink formation by the intersection of dislocation lines

Screw dislocation

b b

b
Edge segment

Slip direction

Dipolar tail
(b sign changes)

Collapse of the 
dipolar tail

Dislocation 
loops

b

b

Fig. 4.4 Formation and collapse of a dipolar tail in a screw dislocation with an edge kink
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The result of this is that the strain hardening rate is non-constant during the plastic
deformation process.

In materials that exhibit planar slip, strain hardening comes from two sources;
one is by the rejection forces of the dislocations of the same sign gliding on the
same plane and the other is the interaction with a major obstacle where the dislo-
cation band ends, usually a grain boundary; this results in a back stress that has to
be overcome by the externally applied stress, resulting in an increment on the
applied stress. Upon approaching the obstacle, the spacing among dislocations
within the band is gradually reduced, forming a pile-up, as more dislocations
incorporate into the pile-up the back stress increases, thus increasing the strain
hardening, and at the same time the shear stress in the tip of the pile-up may be so
high, that it may induce plastic deformation the neighboring grain. Figure 4.6

Fig. 4.5 TEM image of a cold worked metal with several dipolar tails (pointed with arrows)

Obstacle
Back stress

Resolved shear 
stress

Pile upSlip plane

Fig. 4.6 Schematic representation of the formation of a dislocation pile-up and TEM image of a
pile-up pushing against a grain boundary
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shows a scheme of a dislocation pile-up along with a TEM image of a dislocation
pile-up pushing against a grain boundary.

4.3 Grain Boundary Strengthening

Practically since the discovery that engineering metal alloys have a polycrystalline
microstructure, where each individual crystal is a “grain”, the strengthening effect
of the grain size has been studied. The metallurgical engineers quickly discovered
that the smaller the size of the grain size, the greater the mechanical strength. This
was further explained by the fact grain boundaries are obstacles to the dislocations
movement, but this is not the only reason, since grain boundaries have mechanical
strength of their own, so there is a mixture strengthening mechanism, similar to that
of second phases, which will be discussed further in this Chapter. The plastic
deformation of a polycrystalline aggregate can be analyzed as follows. At first, the
grain structure can be viewed as a mixture of single crystals, meaning the indi-
vidual grains, mixed with a material of different mechanical properties located in a
narrow strip of material at both sides of the grain boundary and the grain boundary
itself, as depicted in Fig. 4.7. Since the material within the grains is naturally
anisotropic, and it has a different crystalline orientation with respect to the neigh-
boring gains, it cannot deform freely, but it has to accommodate the deformation of
the adjacent gains. Inside the grains, the deformation mechanism is by dislocation
slip whereas in the zone close to the grain boundary, the deformation mechanism is
more complex, although slip is still active, there is a contribution of grain boundary
glide, that has its own critical resolved stress.

Grain boundary zoneGrain boundary

Grain 
interior

Fig. 4.7 Schematic representation of a polycrystalline microstructure formed by grains (single
crystals) with different crystalline orientation, and the grain boundary region
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Before going further, it is important to recognize that according the difference of
the crystalline orientation between neighboring grains, there are two types of grain
boundaries, which are shown in Fig. 4.8.

(a) High angle grain boundary: They are boundaries where the missorientation
between one grain and another is more than 20°. They have a high surface
energy (around 600 erg/cm2) and it is considered as a region of various atomic
layers thick, where the crystalline structure is quite altered, with a high dislo-
cation density and high concentration of vacancies.

(b) Low angle grain boundary: It is a zone separating two crystal regions with
missorientation less than 20°. They have low energy (around 25 erg/cm2) and
they can be viewed as a vertical arrangement of dislocations.

As it was mentioned above, grain boundaries have their own mechanical
strength, which is usually measured in tensile test specimens containing only two
grains separated by only one boundary called bicrystals. The strength of a grain
boundary depends on its orientation with respect to the applied stress, by a
parameter known as Taylor’s factor, but more important it depends on the tem-
perature. At low temperatures, grain boundaries are stronger than the material in the
grain interior, whereas at high temperatures is the opposite, as shown in Fig. 4.9.
The temperature at which both grain boundaries and grain interiors have the same
strength is termed as equicohesive temperature.

As already mentioned, the effect of grain size in the mechanical strength of
engineering metals is well known. As schematically illustrated in Fig. 4.10, a fine
grain material is stronger than the same material with coarse grain microstructure.

A rationale of this behavior can be understood from the following analysis. The
dislocation slip shear deformation by is calculated by:

c ¼ qdis b x

< 20°

Low angle grain boundary

(hkl) plane
(hkl) plane

Grain 1 Grain 2

High angle grain boundary

≥ 20°

Fig. 4.8 Types of grain boundaries based on the missorientation angle between neighboring
grains
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Using Hollomon equation for stress-strain r = k cn, and assuming that normal
strain e is twice the shear strain c the following equation can be written:

r ¼ 2kðqdis b xÞn

where x is the average slip distance, d is the grain size and k is a constant. Thus
assuming that the maximum value of x is d, substituting x = d and solving for qdis,
the following equation is obtained:

qdis ¼
1
bd

r
k

� �n

From this equation it is concluded that the smaller the grain size, the greater the
dislocation density, consequently it is concluded that a fine grain material will
exhibit greater strain hardening, but without losing ductility in comparison with a
thick grain material, because it has a greater amount of movile dislocations.
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Fig. 4.9 Grain (crystal) and
gran boundary strength as a
function of temperature
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Fig. 4.10 Schematic
illustration of the grain size
effect on the stress-strain
curves on a metallic material.
The differences are similar to
those observed on
experimental curves

110 4 Strengthening Mechanisms



www.manaraa.com

The Hall-Petch Law. The gain size effect in yield limit has been expressed by
the empiric equation known as the Hall-Petch Law, which is expressed as:

r0 ¼ ri þ kffiffiffi
d

p

where ro is the yield strength and ri and k are empiric constants that represent the
grain strength and a dislocation release factor respectively. The Hall-Petch law is of
great importance in metallurgy and its application has led to the development of
ultrafine grain materials that have been a solution to relevant engineering problems
such as the construction of steel pipelines in Arctic climates, where high tensile
strength, combined with high weldability and low ductile-brittle transition tem-
perature is required, all of this without increasing the alloy content, nor applying
heat treatment; this solution was achieved by grain refining techniques. It is worth
to mention that this was the case of the Trans Alaskian Pipeline, constructed in the
late 1970s, an engineering solution that greatly contributed to end the oil crisis of
these years, which otherwise may have led to a global scale conflict.

In addition to increasing the yield strength, the reduction of grain size also
improves strain hardening, tensile strength, ductility, fracture toughness,
ductile-brittle transition temperature and weldability. All of these makes desirable
to always have a fine grained microstructure, however, in grain sizes smaller than
10 nm, the dislocations have little space to move, so the deformation will occur
preferably by grain boundary sliding, therefore 10 nm would be the theoretical
threshold for fine grain strengthening. On the other hand, fine grain materials have
greater internal energy and they will be more reactive in corrosive environments,
and at temperatures above Teq, a fine grain microstructure becomes detrimental
because the grain boundaries are weaker and suffer cavitation, incipient fusion and
preferential oxidation. Thus, for high temperature applications, coarse grain mate-
rials or even single crystals are preferred.

Grain size determination: At this point it is important to define grain size. The
most common way for determining the grain size is described in the ASTM E112
standard which proposes two methods.

Linear interception (known as the Heyn method). This procedure determines the
average grain diameter d, which is defined by the length of one or more straight
lines, divided into the number of intersections with the grain boundaries in a
bidimensional field, usually in a photograph taken in a metallographic microscope,
as shown in Fig. 4.11. In order to obtain a representative measurement, the length
of the line must be such that it has at least 50 intersections (if several lines are used,
the average is taken). The ends of the lines are counted as ½, an intersection with a
triple point is counted as 1½ and the line segments tangent to a grain boundary are
counted as one.

ASTM Comparative method. This method is based on the estimation of the
number of grains per square inch in a field at 100� magnification. The
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measurement may be done by direct counting or by comparing it with a pattern
engraved within the objective lens. The comparison grid is shown in Fig. 4.12
along with an example of a field of one square inch at 100�, which has a grain size
3. The ASTM grain size is the exponent G, of the equation that gives the number of
grains per square inch NAE, as follows:

NAE ¼ 2G�1

The approximate equivalence between the ASTM grain size, number of grain per
square inch and the average grain diameter is given in Table 4.1.

d

660 μm 

L

Number of
intersections = 13

d = 660 / 13 = 50 μ m

Fig. 4.11 Example of the Heyn method for determining the average grain diameter d

Fig. 4.12 Pattern grid for the determination of the ASTM grain size and example of grain size 3
as viewed in the metallographic microscope at 100�
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4.4 Solute Strengthening (Solid Solution)

Since the beginning of the use metals in the bronze ages, more than 5000 years ago,
it has been known that a combination of metals, meaning to say an alloy, is stronger
than the pure metals they are made of. In binary alloys, the maximum strength is
obtained at about 50% of alloying element, providing the alloy is a solid solution.
The effect of the alloy content in the yield strength and the stress-strain curve is
schematically shown in Fig. 4.13.

The Hume-Rothery rules give the conditions that determine the formation of a
solid solution of two alloying elements of dA and dB atomic diameters:

1. If dB < 0.59 dA an interstitial solution will be formed.
2. If dA is 15% greater than dB, the solubility of B in A will be less than 1% weight.
3. If the difference in electron affinity is low, a solid solution will be formed.
4. If the difference in electron affinity is high, an intermetallic compound will be

formed.
5. If the valence of the solute is greater than the valence of the solvent, the

solubility increases.

Table 4.1 Relation between
ASTM grain size and average
grain diameter

G Grains/inch2 at 100� d (lm)

1 1 250

3 4 127

5 16 63.5

8 128 22.5

10 512 11.2

12 2048 5.6

14 8192 2.8

εB%B

σ0

A

σ0B
σ0A

σ
High alloy

Solid solution alloy

Pure metal

Fig. 4.13 Schematic representation of the effect of alloy content in the tension properties of a
solid solution metallic alloy
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Solid solution strengthening is due to the interactions among solute atoms and
dislocations, it does not matter whether the interaction is attraction or repulsion,
because in both cases, strengthening results from the additional stress necessary to
continue moving the dislocations over or away from the obstacle. Under attraction
forces, the dislocation is initially attached to the solute atom, but when the dislo-
cation moves away, the solute attracts it back, acting as a drag force that increases
the resolved shear stress for slip. In case of repulsion, the dislocation is rejected by
the solute as it approaches it, thus an additional stress is required to overcome such
force.

The interaction among dislocations and solute atoms is controlled by the fol-
lowing factors:

Size factor: it is due to the interaction of the elastic stresses around the dislo-
cation and the stresses caused by the lattice distortion when a foreign atom is
introduced, as shown in Fig. 4.14. The magnitude of the distortion within the lattice
is proportional to the difference in size between the solute atoms and the solvent,
the greater the difference in size, the greater the magnitude of the distortion and
therefore more strengthening. Generally, the interstitial atoms produce more
strengthening than the substitutional ones (about threefold for the same content).

The energy of the elastic field interaction between the dislocation and the solute
atom is given by the equation:

Ui ¼ 4Gba3 e0 sen h=r

where a is the lattice parameter, e′ is the magnitude of the distortion introduced by
the foreign atom in the lattice and is calculated by: e′ = (a′ − a)/a′, where a is the
lattice parameter of the pure matrix, and a' is the lattice parameter of the solid
solution; h and r are the polar coordinates of the distance between the solute atom
and the dislocation. According to this equation, the energy of the interaction is
directly proportional to the lattice distortion, but notice that the dependence on a is
a cubic power, that means that the size factor is much stronger in less-compact
lattices, that have greater values of the lattice parameter.

Elastic modulus factor: The presence of solute atoms in the lattice changes the
elastic modulus, affecting the tension in the dislocation line. As the dislocations
move, they rearrange atoms, thus causing variations in the elastic modulus that alter
the tension along the dislocation line, as schematically illustrated in Fig. 4.15,
which makes the dislocation advance more difficult.

Stress fields
Tension field

Compression field
Solute atom

Fig. 4.14 Schematic
representation of the
interaction between elastic
fields of a dislocation and a
solute atom
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Electrostatic interaction factor: in polyvalent materials, the solute atoms
release electrons into the lattice, leaving ions of positive charge. Around the dis-
location, electrons tend to migrate to the tension field region, thus forming an
electric dipole. Such dipole exerts an electrostatic attraction with positively charged
solute atoms, slowing their movement, as depicted in Fig. 4.16.

Chemical interaction: Dislocations, especially partials, have different solubility
with respect to the matrix. If the solubility in the dislocation region is higher than in
the matrix, a cluster of solute atoms will form around the dislocation core, known as
Cottrell atmosphere; so, an additional stress will be required to move the dislo-
cation away. In addition, Cottrell atmospheres distort the lattice and increase the
energy of the crystal. Such energy increment is obtained from the work done by the
external loads, so that the final effect is an increment of the plastic flow stress. This
mechanism is schematically shown in Fig. 4.17.

Configurational interaction: A lattice in equilibrium state has a randomly
distributed arrangement of solute atoms instead of regularly-ordered groups. The
pass of a dislocation alters such arrangements, as depicted in Fig. 4.18. This
mechanism increases the lattice free energy, which leads to strengthening, as an
additional applied stress is needed to provide the extra work.

Fig. 4.15 Schematic representation of the alteration in the tension of a dislocation line by the
presence of solute atoms

(+)

(-)

Electron flow-

Dipole

e(-)(+)Electrostatic 
attraction

Fig. 4.16 Schematic representation of the electrostatic attraction between a dislocation and a
cationic solute atom

Fig. 4.17 Schematic representation of a partial dislocation with a high concentration of solutes
within the stacking fault, which has to be left behind as the dislocation moves away, requiring an
additional stress

4.4 Solute Strengthening (Solid Solution) 115



www.manaraa.com

4.5 Second Phase Strengthening

When the content of an alloying element in a solid solution reaches its solubility
limit, the solution is divided into two or more constituents of fixed chemical
composition and crystalline structure, called phases, each phase being a saturated
solid solution, with its own mechanical, physical and chemical properties. These
mixtures are known as multiphase systems. Typically the phase in greater content is
the matrix and the phases contained within are referred as the second phases. From
the metallurgical point of view, there are two types of multiphase microstructures:

• Aggregates, where the size of the second phase is in the same order of the matrix
grain size.

• Dispersions, where second phases form a dispersion of fine particles contained
within the grains and/or over the grain boundaries.

The microscopic aspect of each of these microstructures in metal alloys is shown
in Fig. 4.19.

Second phases increase mechanical strength in engineering materials, from
moderate increments up to the maximum possible strength, but the may be also
detrimental, depending on their physical characteristics, spatial location and the
nature of their interaction with the dislocations. This is due to the great number of
factors involved in the second phase strengthening, being the most important:

1. Amount of second phase (rule of mixtures).
2. Shape of second-phase particles.

Dislocation

Low energy array

Array alteration 
due to the pass of 
a dislocation

Fig. 4.18 Alteration of the random low energy configuration of a crystal with solute atoms due to
the pass of a dislocation

Aggregate Dispersion

Fig. 4.19 Types of microstructures according to the size of the second phase
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3. Size and spatial distribution of second-phase.
4. Mechanical properties of the matrix and second phase.
5. Crystalline structure and orientation of the matrix and second phases.
6. Cohesive strength between the second phase and the matrix.

The amount of second-phase is the most important factor to be considered in
second phase strengthening, since the overall strength depends on the contribution
of each phase in terms of its volumetric content and mechanical strength. The
estimation of the resulting strength of a second phase aggregate can be estimated by
the rule of mixtures, which is valid under the assumption that the properties of each
phase are independent from each other and from the quantity. The rule of mixtures
can be expressed in its general form, as:

PMix ¼
X

fiPi

where ƒi is the volume fraction and Pi is an independent property of the ith
component. If two phases (1 and 2) of P1 and P2 properties are mixed, the property
of the mixture PMix is:

PMix ¼ f1P1 þ f2P2

A classic example of the rule of mixtures is the density as seen in the following
example.

Example Suppose that two solids of densities q1 = 10 and q2 = 20 (arbitrary units)
are mixed at 50% volume; since it is not expected that the density of one solid
affects density of the other, because density is an independent property, the density
of the mixture can be calculated as:

qMix ¼ f1 q1 þ f2 q2 ¼ 0:5ð10Þþ 0:5ð20Þ ¼ 15

In the stress-strain behavior of second-phase aggregates, most of the mechanical
properties, such as E, ro, rU, ef, and etcetera, are independent, therefore the rule of
mixtures can be applied to determine the resulting property of the mixture.
However, before applying the rule of mixtures for second-phase strengthening it is
important to identify the two types of stress-strain behavior between the matrix and
the second-phase, these are:

Equal-strain: when the second-phase and the matrix are tightly bonded, it is
expected that they will strain equally, therefore the rule of mixtures applies to the
strength, as shown in Fig. 4.20. If the hard phase is the second-phase (2) and the soft
phase is the matrix (1), and there is a 50% volumemixture, the strain of the mixture is:

eMix ¼ e1 ¼ e2
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And the strength of the mixture is:

rMix ¼ f1 r1 þ f2 r2

As observed in Fig. 4.20, under equal-strain, the stress-strain curve of the 50%
volume aggregate is just in the middle of the stress-strain curves of the matrix and
the second phase.

Equal-stress: If the matrix and the second phase strain independently from each
other, then it is expected that each one will experience the same stress, thus:

rMix ¼ r1 ¼ r2

And the strain of the aggregate is:

eMix ¼ f1e1 þ f2e2

Again, for a 50% volume mixture, the stress-strain curve of the aggregate will be
as shown in Fig. 4.21; notice that now, the stress-strain curve of the mixture is
closer to the tension curve of the soft phase.

In conclusion, the stress-strain curve of the mixture that behaves in equal-strain
behavior is above the stress-strain curve of the equal-stress. In conclusion, when the
matrix and the second-phase have equal-strain behavior, the second phase
strengthening of the aggregate is more efficient.

It should be mentioned that not all second-phases produce strengthening, even if
they are harder than the matrix. For a second phase to produce hardening, at least
the following conditions must be met:

(1) There has to be a strong matrix-second phase bond, so an equal-strain behavior
is assured.

(2) Strain has to initiate in the soft phase, which is usually the matrix, for that, the
content of hard phase has to be about 30–50% volume.

σ

ε

Second phase (2)

f2 = 0.5

Matrix (1)σ2

σ1

σMix

εΜix

Fig. 4.20 Schematic
stress-strain curves of a soft
matrix (1) reinforced with a
hard second phase (2) under
equal-strain behavior
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(3) If the content of hard phase is over 70% volume, the hard phase will dominate
the behavior and the mechanical behavior of the mixture will be similar to that
of the hard phase.

The next important controlling factor of second-phase strengthening is the
spatial distribution of the second-phase. Table 4.2 summarizes the effect of the
second-phase distribution on the strength of a metallic alloy, proving that the
second-phase is harder than the matrix. Even when these rules were derived for
metals, they apply for most engineering materials.

The shape of the second phase has also an important effect in mechanical
strength, as illustrated in Fig. 4.22. In general, spherical particles harden the least,
followed by plates and discs, being the needle-shaped (referred as acicular) second
phases the ones that provide the highest hardness, but they also produce brittleness,
therefore, they are not desirable in most microstructures.

Another important aspect in second-phase strengthening is the size and sepa-
ration among particles. The yield strength is related to a k parameter, called in-
terparticle spacing, according to the following experimental rule:

r0 ¼ C log
1
k

� �

1
k
¼ 3f

4ð1� f Þr

where C is an experimental constant, ƒ is the volume fraction of the second phase
particles and r the particle ratio. It is interesting to notice that the term 1/k depends
both on the number and size of the particles, increasing as f increases, whereas if the
particle size is reduced, 1/k increases, increasing the yield strength. Therefore, it is
preferable to have many particles of small size, instead of few particles and of
bigger size, as seen in the next example. Consider the theoretical microstructures of
Fig. 4.23.

σ

ε

Second phase (2)

f2=0.5
Matrix (1)σMix

εMix ε1ε2

Fig. 4.21 Schematic
stress-strain curves of a soft
matrix reinforced with a hard
second phase under equal
stress behavior
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The microstructure on the left in Fig. 4.23 has two particles with a ratio
r = 0.200 mm and f = 0.25. The value of k is 0.800 mm. thus log (1/k) = 0.0969.
The microstructure on the right of Fig. 4.23 has equal volume fraction of particles,
but r = 0.100 mm. The value of k is 0.400 mm, thus log (l/k) = 0.3979. If it is
assumed that C is the same for both microstructures, then the reduction of the

Table 4.2 Effect of the spatial distribution of the hard phase in the second-phase strengthening

Location of the hard
phase

Effect Example

At grain boundaries as a
continuous net

Brittleness Hypereutectic white irons

Discontinuous particles
along grain boundaries

Moderated brittleness
and increased hardness

Sensitized stainless steels

Aggregate of second
phase

High strength and
moderated ductility

Medium and high C steels

Dispersion of fine
particles

Optimum combinations
of strength and ductility

Aluminum series 7XXX heat treated.
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particle ratio from 200 to 100 µm, increases the yield limit by 0.3979/0.0965 = 4.1
fold.

The capability for controlling the mechanical strength through varying the size
and shape of second-phase particles by heat treatment, as schematically depicted in
Fig. 4.24 has been applied to pearlitic steels to improve productivity, in the man-
ufacture of high strength bolts. Heavy duty bolts are manufactured of medium
carbon steel (0.4% C) from grade SAE 5 and up, which have a minimum yield
strength of 100 ksi. In addition they have very strict dimensional tolerances and
must be made in one-piece, usually by forging. A priori, the fabrication process
would be by hot work, but this produces distortion and thick oxide layers that
compromise dimensional tolerances. On the other hand, cold shaping in the high
hardness condition is very difficult. For that reason, in modern industrial processes,
the raw material (coil wire) is ordered in spherodized condition (the cementite is
globular shaped), which is soft and ductile, allowing to fabricate the bolts by cold
forging, with excellent dimensional control and neither oxidation nor distortion.
Once the bolts are shaped, they are thermally treated by quench and tempering, in
controlled atmosphere furnaces, so as to get a microstructure of fine plates,
achieving the desired mechanical strength.

Increase strengthening

Spheres Plates Needles

Fig. 4.22 Effect of the second phase shape in the strengthening level

Fig. 4.23 Hypothetical micro structures with equal volume fraction of second phase, but with
different size and spacing
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4.6 Fine Particle Strengthening

In the previous section it was stated that the optimum combination of strength and
ductility is obtained when the second-phase is in the form of numerous close-spaced
small particles dispersed within the matrix. This has led to the development of an
entire metallurgical branch meant for the development and manufacture of high
strength materials, referred as fine particle strengthening, also named: precipitation
hardened or dispersion hardened materials.

There are two ways to obtain a fine particle dispersion in an engineering
material:

(1) Precipitation from a supersaturated solution.
(2) Mechanical alloying (formerly known as powder metallurgy).

Fine particle precipitation from a supersaturated solution occurs in material
systems, metallic and ceramics, that exhibit a phase transformation where the
solubility at high temperature decreases during cooling. A common reaction of this
type is the Aluminum rich end eutectic transformation in the Aluminum-Cooper
(Al-Cu) system, which is represented by the equation:

a ! aþ h

where a is a solid solution poor in Cu and h is the Cu rich phase (actually h is a
CuAl2 tetragonal phase with 52 wt% Cu). Figure 4.25 shows the Al-Cu phase
diagram of the Al rich zone. The solubility of Cu at T1 = 548 °C is 5.65 wt% and
the solubility of Cu at T2 = 21 °C is less than 1 wt%. If cooling is rapid enough, the
reaction a ! a + h can be suppressed and a supersaturated solution of Cu in Al

σ0

Log (1 / λ) 

Fine Pearlite
(Normalized) Thin and closely 

spaced plates

Coarse Pearlite
(Annealed)

Fe3C globules
(Spherodized)

Thick and widely 
spaced plates

Fig. 4.24 Variation of yield strength in carbon steel as a function of shape and spacing of
cementite plates in pearlitic microstructures
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(ass) is obtained, at temperature T2 = 21 °C, as shown in the Temperature-Time
diagram of Fig. 4.25.

However, the phase ass is unstable at low temperature, thus after some time, it
will start decomposing into a + h, with the characteristic that the precursor of phase
h will appear in form of fine particles. The precipitation may be accelerated by
increasing temperature, but as long as it is lower than the critical temperature,
otherwise h will dissolve into a again.

Another method for obtaining a fine particle dispersion is by a technique called
mechanical alloying, which consists in the mixing, pressing and sintering of dif-
ferent metal powders. In this process, a powder of a hard, insoluble and thermally
stable material is mixed with a powder of a ductile, low melting point material,
which will constitute the matrix. The mixture is compacted and sintered to obtain
the final product. By this method, alloy systems that are impossible to obtain by
precipitation can be fabricated. For example, an aluminum matrix with tungsten
carbide particles. This process is schematically illustrated in the flow diagram of
Fig. 4.26.

The precipitates are classified depending on the coincidence of their crystalline
planes with those of the matrix, as depicted in Fig. 4.27, as follows:

(a) Coherent. The matrix planes match in all directions with those of the particle.
(b) Semi-coherent. The plane matching is partial.
(c) Incoherent. There is no plane match.

As observed in Fig. 4.27, in coherency, the differences of lattice parameters
between the particle and the matrix introduces an elastic deformation field around
the particles. Such stress field difficult the dislocation movement by the attraction
and repulsion forces between the dislocation and the particle stress fields.

The mechanism of fine particle strengthening depends on whether the particles
can be cut by dislocations or not. When particles are cut by dislocations, a shear

T1 = 548

Al

α + θ

T2 = 21

% Cu

T ºC
α

5.65

T T1 = 548 ºC

TCritic

T2 = 21 ºC 

α SS α + θ

Heating at T<TC

Rapid 
cooling α SS

Slow cooling
α + θ agregate

Time

Fig. 4.25 Al rich side of the Cu-Al phase diagram and thermal cycle of a precipitation treatment
from a supersaturated solution
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deformation, along with a step in each side of the particle are produced, as illus-
trated in Fig. 4.28. The deformation strains the surrounding matrix and the new
surfaces created by the steps increase the work demand to produce the corre-
sponding surface energy. Since the work is supplied by the load, the result is an
increment on the stress required to plastically deform the material.

The strengthening when particles are cut by dislocations comes from the addi-
tional stress to deform the particle within the solid, this extra-stress has been
calculated by Mott and Nabarro by the following equation:

Al powder
Tf = 600oC

WC powder
Tf = 17000C 

Mixing Pressing Sintering Fine grain aluminum 
matrix with fine WC 

particles

Fig. 4.26 Flow diagram of the mechanical alloying process by mixing, pressing and sintering
powders to obtain a fine dispersion of precipitates

Coherent Semi-coherent Incoherent 

Fig. 4.27 Schematic representation of precipitate coherency

Sheared 
particle 

Step and new 
surface 

Dislocation 

Particle 

τ Particle shear 

Fig. 4.28 Mechanism of fine particle dislocation cutting
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Dr ¼ G e0 3=2
ffiffiffiffi
rf

p

e0 ¼ a00 � a0
a0

where r is the particle ratio, ƒ is the volume fraction of particles, G is the shear
modulus of the matrix, e’ is a parameter known as lattice misfit strain, a0o is the
lattice parameter of the solid solution around the precipitate and ao is the lattice
parameter. Additionally, when the particle is sheared, an additional work supplied
by the externally applied loads is necessary to create the new surfaces in the steps.
This extra-stress has been estimated as:

Dr ¼ 2G1=2

p

� �
f cs
r

� �

where cs is the particle’s surface energy. The last contribution comes from the
alteration of the dislocation line tension, which increases the internal energy, given
by the following equation:

Dr ¼ 0:8Gb
k

1� ED

ES

� �1=2

where k is the inter-particle spacing, b is the Burgers vector, ED is the Young’s
modulus of the hard phase and ES is Young’s modulus of the soft phase. By
comparing the Dr values calculated with the former three equations, it can be seen
that the matrix deformation factor dominates, followed by the alteration of the
dislocation line tension and the least contribution is by the surface energy factor. It
is interesting to notice that in the matrix deformation factor, Dr depends on √r, so
larger particles at first may produce more strengthening, while for the surface
energy contribution, the dependency is on 1/r, which favors small particles to
increase the strengthening. In conclusion, the cutting particle mechanism requires
an optimal particle size, not too small, but no too large either, and closely spaced
particles in order to maximize strengthening.

When a particle cannot be cut, the dislocation line bows around the particles,
forming curved segments that lengthen until they collapse, forming new dislocation
rings around the particles. This process is known as the Orowan’s mechanism, and
is schematically depicted in Fig. 4.29.

The stress necessary to bow a dislocation over a particle to make it collapse can
be estimated by the equation:

sRC ¼ Gb
k
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And, the increment of the flow stress Dr for the Orowan’s mechanisms is given
by the equation:

Dr ¼ 0:13Gb
k

ln
r
b

� �

According to this equation, non-cutting particle extra-stress linearly increases with
the reduction of particle spacing, and logarithmically increases with particle size. At
first this may be interpreted that coarse and closely spaced particles will provide the
maximum hardening, however the particle size should be small enough to allow the
dislocations to bow around them, but not too big to behave as an aggregate, so there is
an optimal particle size to achieve maximum strengthening by this mechanism.

As a general rule, materials reinforced with cutting particles will be more ductile
and will produce less strain hardening in comparison with materials reinforced with
non-cutting particles, as schematically shown in the stress-strain curves of
Fig. 4.30.

RC
RC Critical 

curvature 
RC= λ/2

λ

τ
Collapse 

Loop 

Fig. 4.29 Orowan’s strengthening mechanism by non-cutting particles

Cutting 
particles

Non-cutting particles
σ

ε

Fig. 4.30 Schematic
stress-strain curves of
materials reinforced with fine
cutting and non-cutting fine
particles
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4.7 Upper Yield Strength and Strain Aging

In diluted interstitial alloys at moderate temperatures, like low carbon steel, a peak
on the stress-strain curve can be observed, just after the onset of yielding. This peak
has been interpreted as two yield strengths: an upper one, which has to be reached
to initiate plastic strain, followed by a lower yield strength, at which a localized
plastic strain occurs, causing a series of “perturbations” or oscillations in the
stress-strain curve, called Lüders deformation, as schematically depicted in
Fig. 4.31. The Lüders deformation proceeds until the plastic deformation becomes
uniform and the curve recovers its usual parabolic shape. During Lüders defor-
mation a series of surface lines, visible at plain sight, appear in the surface of the
tension test specimen, known as Lüders bands, oriented in direction of the maxi-
mum shear stress; that is, at 45 degrees from the tensile stress direction.

Lüders bands are regions with the highest Schmid factor, so there the first
dislocations are released forming coarse dislocation bands that concentrate slip
within a narrow strip of metal. The Lüders bands strain-harden very quickly, so
soon after appearing they stop growing and new bands are formed, causing a little
drop in the flow stress. Every time this process is repeated, there is a stress per-
turbation until the material is saturated with Lüders bands, and then uniform
deformation initiates.

The upper yield phenomenon may be caused also by the accumulation of
interstitial atoms around the dislocations, forming clusters of atoms known as
Cotrell Atmospheres. The upper yield strength is due to the additional stress nec-
essary to move the dislocations away from their Cotrell Atmospheres, once the
dislocations have been released, the plastic strain continues at a lower stress level
corresponding to the yield strength of the crystal. When the upper yield is followed
by Lüders deformation, the cause is the same, since the first bands to activate are
those with the highest Schmid factor.

σ

ε

σ0
Up

σ0
Low

Lüders bands

45 o

Fig. 4.31 Schematic stress-strain curve of a material with upper yield strength
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Lüders bands are considered a flaw in cold formed shapes like bars and sheet
plates, so their appearance is undesirable. One way to avoid both upper yield and
Lüders bands is to plastically predeform the material by a small amount or apply an
annealing heat treatment. In the first case, the dislocations are released from their
Cotrell atmospheres so in the next deformation cycle they are free to move at the
normal critical resolved shear stress, and in the second, the interstitial atoms are
redistributed in the matrix, eliminating the Cotrell atmospheres.

The upper yield phenomenon can also appear in any material if the initial
dislocation density is very low and the externally imposed strain rate is very high.
This is explained by the following analysis:

The slip strain rate is given by:

dc=dt ¼ bqdis v

where v is the dislocation velocity, which depends on stress, as to:

v ¼ C
s
sRC

� �m0

where C and m′ are material constants, s is the resolved shear stress and, sRC is the
critical resolved shear stress. Then, if the initial dislocation density is low (say 103

dislocations/cm2), a greater stress is required to reach the externally imposed strain
rate. As the strain goes further, the crystal is quickly filled with dislocations,
increasing the dislocation density, so the dislocation velocity is reduced and con-
sequently the required stress drops. In this case, Lüders bands are not formed and
the upper yield effect disappears as soon as the strain plastic strain is generalized, as
schematically shown in Fig. 4.32.

Another phenomenon that produces a saw tooth appearance of the stress-strain
curve, as depicted in Fig. 4.33, is the Portevin-Lechatlier effect or also called,
deformation aging. This phenomenon is caused by the repeated precipitation and
dissolution of fine particles during plastic strain, termed dynamic precipitation. The
Portevin-Lechatelier effect occurs at intermediate temperatures and specific strain
rates in metastable alloys.

σ
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Fig. 4.32 Schematic
strain-stress curve of a
material with initial low
dislocation density deformed
at a high strain rate
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4.8 Martensite Hardening in Steels

Steel is the most extensively used engineering material, mainly because it can
display almost every combination of mechanical properties, from soft-and-ductile to
hard-and-brittle and, from very soft to ultra-high strength. This versatility is due to
two factors:

1. The high solubility of substitutional alloying elements, like Cr, Ni, Mo, Mn, and
interstitial alloying elements, like C, B, N, in iron (Fe).

2. The phase transformations that the Fe-C system exhibits upon heat treatment.

To better understand this behavior, it is convenient to review the main phase
transformations of steel:

• Eutectoid reaction: It is the transformation of austenite into ferrite (almost pure
Fe) and cementite (Fe3C) that occurs when cooling below 723 °C. Cementite
precipitates in the form of plates alternated with ferrite plates, creating a con-
stituent known as pearlite. Based on the carbon content, steel can be 100%
ferritic (less than 0.02% C) up to 100% pearlitic (0.8% C).

• Precipitation of fine particles, generally in the form of Cr, Mo, and V carbides.
• Martensitic transformation.

The martensitic transformation is the most important from the technological
point of view, because the wide variation of mechanical properties that can produce,
as shown in the graph of Fig. 4.34. As it can be seen, martensite can induce as
much as three times more hardening than pearlite, depending to the carbon content.
Ordinary steel, known as “structural steel” is basically a ferrite-perlite aggregate.
Ferrite is practically pure iron, with a bcc structure and very little carbon solubility
(0.006% maximum at room temperature), although it can dissolve a great content of
alloying elements. Ferrite is soft (ro < 70 MPa, 10 ksi), while cementite is iron
carbide (Fe3C) with a tetragonal structure that has very high hardness values (650
BHN, rUTS = 2240 MPa, 325 ksi)). Pearlite is an aggregate of cementite plates
alternated with ferrite plates that features mixture strengthening, so the greater the

σ
Amb

90-110 oC

200-250 oC

>300 oC

ε

Fig. 4.33 Schematic
stress-strain curves of a
metastable low alloy steel
strained at different
temperatures. The curve at
200–250 °C shows the
Portevin-Le Chatelier effect
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perlite content, the greater the hardness. Martensite, on the other hand, has multiple
hardening mechanisms that appear at the same time, all of which provides much
more hardening than perlite, for the same carbon content.

The martensitic transformation in steel is achieved by a heat treatment called
quenching, which is a rapid cooling from the austenite phase, above 912 °C, fol-
lowed by a rapid cooling that prevents the diffusion of carbon out of the austenite
phase, a necessary condition to form ferrite and cementite, forcing the austenite fcc
lattice to rearrange into a tetragonal body centered structure, that is implicit in the
fcc lattice, as shown in Fig. 4.35. This mechanism is called Bain distortion and is a
bulk transformation that occurs by shear deformation through a process similar to
twining, then being a difusionless transformation.

According to the Bain distortion mechanism, martensite is formed from a nuclei
that grows inside the austenite grain, accompanied by volume expansion, because
of the tetragonal crystalline structure. The shear deformation and volume expansion
cause plastic strain in the surrounding untransformed austenite, which results in
an additional strain hardening. This process also produces a surface roughness that
gives quenched steel pieces a characteristic rough surface aspect, as schematically
shown in Fig. 4.36.

The typical appearance of martensite in the metallographic microscope is shown
in Fig. 4.37. The microstructure can be visualized as a series of fine plates, similar
to twins, alternated with areas of untransformed austenite, known as retained
austenite. Due to its metastable condition, martensite is easily attacked, showing
dark gray tones, whereas retained austenite looks white. The martensitic
microstructures are classified as lath, plates or acicular, according to their appear-
ance in a metallographic specimen. Acicular martensite is the hardest and most
brittle and therefore is undesirable in most practical applications of quenched steels
or in process that involve rapid cooling rates, such as welding.

As martensite has a body centered tetragonal structure with few slip systems, it is
quite hard in itself, being this one the main hardening mechanism. In addition, the
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Fig. 4.35 Bain distortion of the austenite forming a body centered tetragonal cell that is implicit
in the fcc cell. The transformation is diffusionless by shear strain similar to twining
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Fig. 4.36 Plastic deformation of austenite and surface roughness, caused by the Bain distortion

Lath martensite Plate martensite

Fig. 4.37 Martensitic microstructures of steel. The light colored regions are retained austenite.
Nital attack, bright field
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phase boundaries are strong obstacles to the movement of dislocations; carbon, as
an interstitial solute, provides solute hardening and there are numerous coherent
carbide particles, all of which contribute to the significant hardness levels of
martensite. The amount of martensite hardening can be estimated by the following
equation:

ro ¼ ri þ koffiffiffi
d

p þ k
ffiffiffiffi
C

p
þ aGb

ffiffiffiffiffi
qd

p

where ro is the tetragonal cell yield strength, C is the concentration of solute atoms,
d is the size of the transformed zone (referred to as the martensite pack size), qd is
the dislocation density, G is the shear modulus, b is the Burger’s vector and ko and
k are material constants. The first term stands for Pierls stress or lattice friction, the
second term is the contribution of the martensite boundaries (similar to grain
boundaries), the third term is the solute hardening contribution and the fourth term
is the contribution of strain hardening. According to this equation, the finer the
martensite plates (small d values) and greater the carbon content, more is the
hardening, just as it is known by experience.

Tempering: Since martensite features practically all of the hardening mecha-
nisms, it is expected that, immediately after quench, it should be very
hard-and-brittle. For this reason, since ancient times, quenched steels are subject to
a further heating treatment, below the austenite transformation temperature (about
715 °C), known as temper. The immediate effect of temper heat treatment is the
reduction of the dislocation density, which is accompanied by grain refining, and
simultaneously, the retained austenite transforms into ferrite and the metastable
martensite transforms into ferrite with a dispersion of fine carbides. As the time and
temper temperature increase, the martensite and retained austenite transform into
the equilibrium phases (ferrite and cementite), and eventually the microstructure
will become coarser, reaching low strengths. This reduction of mechanical strength,
is compensated by a ductility increment, resulting in a high toughness material. At
the microstructural level, tempered martensite is a ferrite matrix, reinforced by fine
carbide particle dispersion, which has the metallographic appearance as shown in
Fig. 4.38.

The effect of the tempering temperature in the mechanical properties of quen-
ched steel is shown in Fig. 4.39, which is known as “temper curve”. Such curves
are specific for each steel specification and they are obtained for tempering times of
one hour per every 25 mm (1 inch) thickness of material. Temper curves are quite
useful, because through them, the mechanical properties of a quench and tempered
steel can be chosen, almost at will.

The high degree of fine particle strengthening that occurs in quench and tem-
pered steel has been effectively used for the development of a group of ultra-high
strength and high toughness steels named “Maraging”, a term formed by the words
“martensitic” and “aging”. The last word referring to the post-quench heat treatment
applied to obtain a fine dispersion of precipitates. Maraging steels contain nickel,
cobalt, molybdenum and titanium that produce coherent intermetallic precipitates,
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which promote precipitation strengthening, in addition to be stable at temperatures
up to 400 °C and provide high resistance to corrosion. All of this make Maragin
steels an excellent choice for extreme service condition applications.

Fig. 4.38 Tempered martensite in steel. Metallographic microscope, Nital attack
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Fig. 4.39 Temper curve, showing the variation of the mechanical properties of quenched steel as
a function of tempering temperature (one hour soak time per 1 inch thickness)
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Chapter 5
Mechanical Behavior of Composites
and Polymers

Abstract This chapter is divided in two sections; the first section is an introduction
to the nature and classification composite materials, followed with a description of
the mechanical behavior of fiber reinforced resin matrix composites, including the
concepts of critical fiber length and fiber content to achieve functional composites.
The modes of composite materials failure are described along with the most
accepted equations to predict the strength of uniaxial fiber reinforced composites.
The second section of this chapter deals with the mechanical behavior of thermo-
plastic polymers, describing the concepts of relaxation and glass transformation, a
brief description of the Maxwell and Voight models of stress-strain behavior of
thermoplastic polymers and a brief description of the mechanical behavior of
elastomers. The chapter finishes with an introduction to the main failure mecha-
nisms of polymers.

5.1 Fundamentals of Fiber Reinforced Composite
Materials

Composite materials are macroscopic combinations of two or more materials with
different physical properties, produced with the aim of obtaining an intermediate
property or rather an improvement of properties, being the most frequently sought:
high strength and low density combinations.

A composite material is made up of a matrix which provides shape and volume
to the piece to be fabricated, at the same time protects, separates and transmits the
applied loads to the reinforcing material. The matrix must not react with the rein-
forcing material, but has to have good wettability and adherence to it. Usually, the
matrix is of low density and should have good formability properties, whereas the
reinforcing material should have a high mechanical strength.

Composite materials already exist in nature, such as wood, composed of cellulose
fibers in a hemicellulose matrix, or bone, composed of a ceramic called hydroxyap-
atite reinforcedwith collagen fibers. Composites are ancient as well, like the straw and
mud bricks, used since more than 5000 years ago to construct houses. However, the
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first composites considered as engineering materials were developed in the early XX
Century, like fiberglass and Bakelite embedded in polymer matrices. Advanced
composites may have tensile strengths comparable to those of high alloy steels (up to
2000 MPa, 290 ksi), but their strength-to-density ratio is quite superior, 50–125
[cm−1] for composites, as compared to 5–30 [cm 10−1] for metals, which makes them
really superbmaterials for advanced applications, such as airplanes and space rockets.

Composites are classified according to the matrix material and type of rein-
forcement, as shown in Table 5.1. Practically any combination of engineering
materials may be used to fabricate composites, but fiber-reinforced composites are
the most common type used nowadays, being the most popular those of epoxy
resins or other polymers matrix, with tensile strength of 25–200 MPa and density
1.1–1.4 g/cm3, reinforced with high strength fibers, such as fiber glass (tensile
strength 3100 MPa, density 2.54 g/cm3) or carbon fiber (tensile strength
3450 MPa, density 1.8 g/cm3).

In fiber reinforced composites, the fibers should withstand the loads, so they must
behave within the elastic regime, whereas the matrix may have an elastic-plastic
behavior to some extent. To understand the mechanical behavior of fiber-reinforced
composites, consider a single fiber composite stressed under tension, as schemati-
cally shown in Fig. 5.1. In this system, the tensile stress is maximum in the middle
section of the fiber, while the shear stress is maximum at the ends.

As the load increases, the shear stresses at the composite ends initiate plastic
strain of the matrix. On further load increments, plastic deformation spreads out
towards the center of the composite, up to the point where the matrix is completely
detached of the fiber and the composite fails. Therefore, in order to have an
effective composite, the former condition should be avoided by having long enough
fibers so the plastic strain of the matrix does not reach the middle section of the
fiber. This is called critical length (Lc), and is determined by the half fiber length at
which the tension force in the fiber equals the shear force in the surface of the fiber,
that is:

Table 5.1 Classification of composite materials

Matrix Metallic All alloys

No metallic Plastics (rigid polymers)

Resins (solidifying polymers)

Elastomers (rubbers)

Ceramics (technical)

Rocks (ceramic in natural state)

Form of the reinforcement Fibers
Particles or flakes
Plates

Continuum (except particles or flakes)
Discontinues
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rf
pd2

4

� �
¼ pdL

2

� �
s0M

where rƒ is the fiber tensile strength d is the fiber diameter and s0M is the shear
strength of the fiber-matrix contact area. Solving the above equation for L, gives the
fiber critical length:

LC ¼ rf d
2s0M

The critical length implies that the fibers may be discontinuous, as long as they
are longer than Lc, thus it is not necessary that the fibers be as long as the total length
of the piece to be manufactured, which may be a problem in large components, such
as aircraft wings or fuselage panels. Since the values of rƒ are tens up to hundreds of
times larger than s0M, and the typical diameter of the fibers should be very small
(<0.05 mm), in order to keep the values of Lc in the range of several millimeters.
This results in an additional advantage for the fabrication fiber reinforced compos-
ites, since it is well known that thin and short fibers are stronger than long and thick
ones, and additionally, the moulding and shaping of pieces with thin fibers is a lot
easier because they are more flexible. Another advantage of short Lc values is that, if
the composite-made component suffers an impact or is cut damaged, the fibers may
be still longer that Lc, therefore the composite will be tolerant to the damage.

5.2 Mechanical Behavior of Fiber Reinforced Composites

The stress-strain behavior of fiber reinforced composites, consist of three stages.
Stage I. Elastic deformation in equal strain condition. Under this condition

the fiber and the matrix strain equally in elastic regime, so the stress-strain curves

Load 

Fiber length 

Shear stress

Tensile stress (

Matrix

Fiber

Fig. 5.1 Stress distribution throughout a single fiber composite

5.1 Fundamentals of Fiber Reinforced Composite Materials 137



www.manaraa.com

will be as shown in Fig. 5.2. Based on the rule of mixtures, the Young modulus of
the composite (Ec) may be calculated as:

EC ¼ Ef ff þEMfM

where Eƒ is fiber Young modulus, EM is the matrix Young modulus, and ƒƒ and fM
are the volume fraction of the fiber and the matrix respectively. If the composite is
made of a single matrix and a single type of fiber: ff + fM = 1.

Stage II. Quasi-elastic deformation. In this stage, the fibers are elastic, but the
matrix begins to yield, persisting equal deformation behavior, hence the composite
strength (rC) is:

rC ¼ rf ff þ r0MfM

where rƒ is the fiber tensile strength and r0
M is the stress in the matrix when stress

in the fiber is equal to the applied stress, that is, when the fibers bear the full load.
Stage III. Composite failure. The failure of the composite can occur by three

mechanisms: (1) fiber rupture, which is the desirable condition because it occurs at
a stress similar to the tensile strength of the fibers, (2) fiber pull out, the fibers
detach of the matrix and they are pulled out, so the strength rapidly drops as more
fibers are pulled out; and (3) matrix failure, this is the least desirable mode of failure
because it occurs at a stress close to the matrix strength, which is very low. These
failure modes depend on the orientation of the fibers with respect to direction of the
load, as it will be further described.

As it can be easily understood, the mechanical strength of a composite mainly
depends on the fiber content. In order to be useful, a composite should have a
mechanical strength greater than that of the matrix. At low loads the composite
behaves in Stage I, so the increment of strength as a function of the fiber content is
given by the rule of mixtures, but as the loads increase, the mechanical behavior
switches to Stage II, and becomes more complex, due to the great difference
between the matrix and fiber elastic moduli. In Stage I, the composite’s elastic
modulus is controlled by the fiber content, as expressed by the following equation:

c = Ec

f = Ef

M = E

Fiber

Matrix 

Composite

Fig. 5.2 Elastic stress-strain
curves of a composite in
Stage I (equal elastic strain)
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EC ¼ Ef ff

In Stage II, the composite strength is given by:

rC ¼ rf ff þ r0M 1 � ff
� �

If the fibers are discontinuous, the previous equation is modified as:

rC ¼ rf ff 1� LC
2L

� �
þ r0M 1� ff

� �

On the other hand, if there are very few fibers, hypothetically, they will fracture
rather quickly and the matrix will withstand the full load but with a reduced
cross-section area, that is the total cross-section area minus the area occupied by the
fibers, therefore the composite’s strength is given by:

rC ¼ rMð1� ff Þ

Plotting the rC equations for each condition, the curves shown in Fig. 5.3 are
obtained.

According to Fig. 5.3, there is a critical fiber content (ƒcrit), which is when the
composite strength rC is equal to the matrix strength rM . However, as there is no
point on manufacturing a composite if its strength is less than that of the matrix, the
fiber content should be higher than ƒcrit. The value of ƒcrit, can be calculated by
substituting rM into the equation of rC for Stage II and solving for ff, thus:

fcrit ¼ rM � rM0

rf � rM0

The strength of unidirectional fiber reinforced composites (rC), depends on the
fiber orientation with respect to the load direction, represented by the symbol /. To

C
f

M

M’

0 1.0 fcrit ff

σ
σ

σ

σ

Fig. 5.3 Tensile strength of a
composite as a function of
fiber content in Stage II for
the low fiber content
condition (negative slope line)
and Stage II behavior
(positive slope line)
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calculate rC as a function of /, consider a composite laminate plate aligned to a
coordinate system x, y, let the longitudinal direction of the fibers to be 1 and the
direction transverse to the fibers to be 2, as shown in Fig. 5.4.

The of stress and strain transformation equations, from the x, y coordinate system
to the 1, 2 coordinate system are:

rxx
ryy
rxy

8<
:

9=
; ¼

m2 n2 �2mn
n2 m2 mn
mn �mm m2 � n2

2
4

3
5 r11

r22
r12

8<
:

9=
;

exx
eyy
exy

8<
:

9=
; ¼

m2 n2 �mn
n2 m2 mn
2mn �2mn m2 � n2

2
4

3
5 e11

e22
e12

8<
:

9=
;

where m = cos/ and n = cos(90 − /). From the anisotropic theory of elasticity, the
constitutive equations are:

exx
eyy
2exy

8<
:

9=
; ¼

S11 S12 S16
S21 S22 S26
S16 S26 S66

2
4

3
5 rxx

ryy
rxy

8<
:

9=
;

where Sij is the elastic constant. Here, the short notation of the sub-indexes is used,
where: xx = 1, yy = 2 and xy = 6. A similar equation can be written for the lon-
gitudinal and transverse fiber directions; to avoid confusions, the elastic constants
for these directions is Qij.

e11
e22
2e12

8<
:

9=
; ¼

Q11 Q12 Q16

Q21 Q22 Q26

Q16 Q26 Q66

2
4

3
5 r11

r22
r12

8<
:

9=
;

From the previous equations, the elastic constants in the longitudinal direction of
the laminate (x) can be derived, giving:

x

y

12

φ

Fig. 5.4 Coordinate systems
for the analysis of the
mechanical behavior of a
unidirectional fiber composite
laminate, where: x, y arbitrary
coordinate system and 1 is the
longitudinal direction of the
fibers, and 2 the direction
transverse to the fibers
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Ex ¼ 1
S11

¼ Q11 � Q2
12

Q22

Gxy ¼ Q66

txy ¼ � S12
S11

¼ Q12

Q22

The variation of the elastic constants in the longitudinal direction of the laminate
(x) is shown in Fig. 5.5. As expected, the highest value of the Young’s modulus
corresponds to the fibers parallel to the load direction (/ = 0), and it is equal to the
fibers Young’s modulus, while at / = 90°, the Young’s modulus is minimum and
corresponds to the matrix’s value. It is interesting to observe that the Young’s
modulus drops abruptly (more than 80%) at angles from zero to 20°, indicating that
to maintain a high extensional stiffness, the fibers should be as close as possible to
the direction of the maximum principal stresses. The shear modulus, on the other
hand, is maximum at / = 45°, but its value is smaller than the isotropic value
(given by G = E/2[1 − v]). This result indicates that the stiffness of a unidirectional
fiber composite is largely controlled by the shear modulus of the matrix.

The ultimate tensile strength of unidirectional fiber composites also depends on
the / angle. The equations that represent the composite’s strength for each failure
mode, can be derived from the Mohr’s circle shown in Fig. 5.6.

The failure Mode I occurs when the stress component rxx reaches the ultimate
tensile strength of the fibers rf ; which, from the Mohr’s circle, is:

0
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Angle , degreesφ

Fig. 5.5 Variation of the Young’s modulus Ex (solid line) and the shear modulus Gxy (dotted line)
with the angle of the fibers of a composite laminate
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rxx ¼ rA
2

þ rA
2
cos 2/ ¼ rA

2
1þ cos 2/ð Þ

To simplify the equation, the following identities are used: cos
2/ = 1 – 2sen2/; 1 − sen2/ = cos2/ and [cos2/]−1 = sec2/. Therefore, if
rxx ¼ rf ; and solving for rA, the composite strength in Mode I is given by:

rCI ¼ rf sec2/

Mode II failure happens when the sxy stress component equals the cohesion
strength of the fiber-matrix interface sfM, form the Mohr’s circle, the shear stress is:

sxy ¼ rA
2

sin 2/ð Þ

By using the identity (sin 2/)−1 = csec 2/, and solving for rA, the Mode II
composite’s strength is:

rCII ¼ 2sfMcsec 2/ð Þ

Finally, Mode III failure will occur when the ryy stress component equals the
matrix tensile strength rM . From the Mohr’s circle, ryy is given by:

ryy ¼ rA
2
� rA

2
cos 2/ ¼ rA

2
1� cos 2/ð Þ ¼ rA sin2 /

Thus, substituting ryy ¼ rM and using the identity [sin2 /]−1 = csec2/, the
composite’s strength for Mode III is given by the equation:

-

Axx

yy

- xy

A

2

½ A
xy

xy = ½ A
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φFig. 5.6 Mohr’s circle of a
composite laminate to
determine the stress
components in the
longitudinal, transverse and
shear direction of the fibers
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rCIII ¼ rMcsec2/

Table 5.2 shows examples of the three modes of failure of an unidirectional fiber
reinforced composite; plotting the equations of Table 5.2, and taking the criterion
that composite’s strength is the lowest of each failure mode, the variation of the
unidirectional fiber composite strength (rC) as a function of the fiber orientation
angle (/), is the curve shown in Fig. 5.7. Notice that the composite’s strength is
controlled by fiber rupture (Mode I) at fiber angles less than about 8°, while for
larger angles the strength is controlled by fiber decohesion modes (II and III), which
emphasize the importance of having a very strong matrix-fiber cohesion.

Based on the previous analysis, the design and manufacture of composite
materials for structural components under multi axial stresses, require to have
enough fibers in the maximum principal stress directions. In practice, this is
achieved by placing layers of laminates with fibers in different orientations,
obtaining a so called laminated composite or sandwich type. Another common
practice is to manufacture a fiber weaving, similar to a fabric. Figure 5.8 shows
schematically examples of such arrangements.

Table 5.2 Tensile strength of unidirectional fiber reinforced composite and failure modes

Failure mode Tensile strength Example

Mode I: Fiber rupture rCI ¼ rf sec2/

Mode II: Fiber decohesion rCII ¼ 2sfM csecð2/Þ

Mode III: Matrix failure rCIII ¼ rMcsec2/
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5.3 Mechanical Behavior of Polymers

A polymer is a material formed by long molecular chains that are constituted by
molecular units called monomers. The most widely known polymers are those
formed by carbon-hydrogen molecules, but there are also other molecules that make
polymers, such as silicon oxide. When monomers link to each other to form a chain,
the process is called polymerization by addition; like polyethylene, which results
from the linkage of ethylene molecules. If monomers of different kinds join toge-
ther, the process is called copolymerization, like polyvinyl chloride (PVC) that
comes from the polymerization of vinyl chlorine and vinyl acetate. When double
joint links in monomers “open”, forming joint bonds, it is said that polymers are
bifunctional. Polymerization by condensation takes place when monomer units
chemically react to form a chain, with a molecular product in each point of reaction.

In polymers, the main chain joints are composed of primary links, so they are
strong and stable, whereas the chains are joined to each other by weak links of the

Composite 
strength 

c

Mode I 

Mode II 

Mode III 

0 90
Angle of fibers,

30º º º60





Fig. 5.7 Tensile strength of a composite with unidirectional fibers as a function of the fiber angle
with respect to the load axis

Multilayer laminated composite Wounded composite 

Fig. 5.8 Strategies to ensure having enough fibers in the maximum principal stress direction of a
laminated composite
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Van der Waals type, cross links, covalent links or hydrogen bridges, giving the
polymer its great flexibility and ductility.

According to their response to temperature, polymers are classified as.
Thermoplastic. They soften as the temperature increases and when cooling, they

recover their original properties, keeping their molecular form. Typically, they have
chains joined by Van Der Waals links that, when subject to stress, can separate,
rotate and glide over themselves. An example is polyethylene.

Thermoset. They keep their mechanical strength and molecular structure up to
certain temperature, after which they chemically break down. Typically, they have
chains joined by tridimensional grids of covalent links. An example is Bakelite
(polyphenol-formaldehyde).

Generally, it is assumed that polymers are amorphous materials, but many of
them are constituted by a mixture of small crystals (about 10 nm long), surrounded
by amorphous zones in an edge-micelle type array, as schematically shown in
Fig. 5.9.

The polymer’s crystal morphology is typically in form of layers with folded
molecular chains, perpendicular to the plane and their size and quantity depend on
the cooling rate. In polymers such as nylon and polyethylene, the crystals may
group up in structures called spherulites, which are visible in the microscope under
polarized light, as shown in Fig. 5.10. Spherulites may turn into micelles when the
polymer is plastically strained.

The mechanical behavior of polymers is essentially the same as in any solid: the
externally applied loads produce stresses, stresses generate strains, that are first
elastic, and then plastic and when the material can no longer strain, it fractures.
Thermoset polymers usually feature a brittle behavior, whereas thermoplastic
polymers, exhibit a non-linear elastic deformation combined with time-dependent
plastic deformation. Thermoplastic polymers are not very strong (the tensile
strength is up to about 140 MPa, 20 ksi), but they feature very high elongations, of
several hundreds of percent prior to rupture. Figure 5.11 shows the typical
stress-strain curves of common polymers.

Another characteristic of thermoplastic polymers is that, at a fixed strain, the stress
may drop through time; this phenomenon is called relaxation. The Relaxation
Modulus (Er) is the stress/deformation ratio after a given time. Usually Er depends on
temperature, the degree of crystallization and the type of bond. Figure 5.12 shows the
variation of Er with respect to temperature of polystyrene; it is observed that crys-
talline and cross link polystyrene have two plateaus, one at low temperatures, called

Crystalline region Amorphous micele

Fig. 5.9 Schematic representation of the crystalline and amorphous regions in a polymer
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glassy, and a second one at intermediate temperatures, called rubbery, while amor-
phous polystyrene is always rubbery. At elevated temperatures, the values of Er drop
sharply because the secondary bonds melt, and the material exhibits a viscous flow.

Another important property of polymers is the glass transition temperature (Tg),
which is the temperature at which the elastic behavior changes into a viscoelastic,
and the deformation becomes time-dependent. The value of Tg is determined by the
point where the slope of the specific volume Ve versus Temperature plot changes,
which normally is between 0.5 and 0.75 of the melting temperature, as shown in
Fig. 5.13. The glass transition is caused by the weakening of the secondary bonds
that allow the molecules to glide and twist over each other.

The stress-strain behavior of polymers in the viscoelastic regime can be repre-
sented by mechanical models formed by an array of helical springs and hydraulic
dashpots. The springs represent the elastic strain caused by the stretching of “fro-
zen” molecules and the dashpots represent the viscous flow, caused by the glide and
rotation of polymer chains. In most polymers, at temperatures lower than Tg, the
spring strain dominates, so the deformation is proportional to the load, whereas at
intermediate temperatures, the spring elongation is delayed by the dashpot, so the

Fig. 5.10 Folded chains in polymeric crystals and spherulite crystals in nylon. Image taken from
https://en.wilkipedia.org/wiki/Spherulite(polymer_physics)
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elastic strain is time dependent and finally, at high temperature, the viscous flow
controls the strain, so it can be represented by the dashpot alone.

At low temperatures, where the glassy behavior dominates, the stress-strain
behavior is represented by the Maxwell’s model, which consist of a spring con-
nected in series with a dashpot, as shown in Fig. 5.14.

If the spring follows Hooke’s law, its strain is given by eE = r/E. If the fluid in
the dashpot is Newtonian (the viscosity coefficient is independent of the strain rate),
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Fig. 5.12 Relaxation modulus of polystyrene after 10 s
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the viscous strain given by eV = rt/η (where t is time and η is viscosity coefficient).
Therefore, in Maxwell’s model the total strain will be:

e ¼ eE þ eV ¼ r
E
þ rt

g

If after a time tl, the load is removed, polymer remains strained because the
dashpot keeps its length, but the stress will drop because the relaxation of the
spring, according to the following equation:

r ¼ eE exp �Et
g

� �

The Maxwell’s behavior is schematically depicted in Fig. 5.15. Notice that when
t = E/n, the previous equation is reduced to 0.3679 Ee and strain is in a steady state,
and the value of t is the relaxation time.

At intermediate and high temperatures with respect to the Tg, the behavior is
rubbery and the strain is simultaneously elastic and viscous, which is represented by
the Voigt’s model, consisting of a parallel system of spring and dashpot, as shown
in Fig. 5.16.

Again, if the polymer is under a constant stress, the total strain is:

r ¼ r
E

� 	
1� exp �Et

g

� �� �

And if after a time t1, the load is removed, the strain is given by:

e ¼ e1exp �Et
g

� �

The Voigt’s model plot is shown in Fig. 5.17.
As it may be foreseen from the previous description, the mechanical behavior of

polymeric materials is greatly dependent on the temperature. Figure 5.18 shows the
effect of temperature on the mechanical behavior of a thermoplastic polymer. At tem-
peratures below Tg the behavior is similar to a thermoset polymer, which is linear-elastic
with brittle fracture. At temperatures closer, but still under Tg, the behavior is
elastic-plastic, with ductile tearing failure mode. Finally, at temperatures equal or greater
than Tg, the behavior is viscous-elastic, just as described in the previous section.

Fig. 5.14 Maxwell’s model for glassy behavior; the strain is initially elastic, controlled by the
spring, followed by viscous flow, controlled by the hydraulic dashpot
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Fig. 5.15 Stress-strain behavior as a function of time for the Maxwell model

Fig. 5.16 Voigt’s model for
rubbery behavior, where
strain is simultaneously
elastic and viscous
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Fig. 5.17 Voigt’s model stress-strain behavior for rubbery polymers

5.3 Mechanical Behavior of Polymers 149



www.manaraa.com

5.4 Mechanical Behavior of Elastomers

Elastomers are polymeric materials that exhibit large elastic deformations, up to
hundreds of percent, but with an elastic linear elongation of no more than 1%, while
the rest of the elastic deformation is non-linear; they also show little plastic
deformation, so their fracture is, ironically, brittle. Elastomers are usually very soft,
they have a low elastic modulus and their stress-strain curve does not show a
well-defined yield strength, but it is normally very close to the tensile strength. The
tensile strength of commercial elastomers ranges from 5 to 35 MPa (700–5000 psi)
and the elongations may be up to 2000%. The stress-strain curve of an elastomer is
schematically shown in Fig. 5.19.

The elastomeric behavior of rubber is observed at temperatures higher than Tg
and is attributed to the rotation of polymer chains and the folding of monomer
joints, which allow the molecular chains to, first align and then stretch, as
schematically shown in Fig. 5.20. When an elastomer does not have cross links, it
deforms in an elastic-plastic mode, leaving a small plastic deformation when the
load is removed. When the elastomer does have cross links, the deformation is
totally elastic, so when the load is removed, the material recovers its original form
and dimensions.

One of the most widely used elastomers is synthetic rubber, which comes from a
natural rubber collected by the ancient Olmec and Maya cultures from Mexico of a
three called “chicle”, for making balls, shoes and water proof textiles. In 1839
Charles Goodyear developed the vulcanization process to produce a very strong
rubber that was used to make car tires, bands, gloves among many other things.
Modern rubber is in most cases, isoprene mixed with chloroprene and isobutylene,
which are copolymerized by vulcanization, in which cross joints are formed by the
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Fig. 5.18 Effect of
temperature on the
stress-strain behavior of a
thermoplastic polymer.
Adapted from [1]
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addition of sulfur between the double joints of neighboring chains. The copoly-
merization reaction to fabricate modern rubber is shown in Fig. 5.21.

The vulcanization of rubber allows to obtain a wide range of physical and
mechanical properties, at first by varying the amount of added sulfur, typically from
0.5 to 5wt%. Low sulfur amounts produce a soft and elastic rubber, like elastic
bands; the greater the sulfur content, the harder and more brittle rubber becomes,

Fig. 5.20 Deformation mechanism of an elastomer
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Fig. 5.19 Schematic
stress-strain curve of an
elastomer

Fig. 5.21 Copolymerization reaction of synthetic rubber by the vulcanization process. Image
taken from the article Rubber, www.newworldencyclopedia.org/entry/Rubber
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such as the belts used in motors and pumps. Table 5.3 presents the typical
mechanical properties of elastomers commonly used in industry and daily life.

5.5 Failure Mechanisms of Polymers

The elastic deformation mechanism of elastomers and thermoplastic polymers can
be described in simple terms as the unfolding of the tangled molecules by the action
of a tensile stress. Since the cross links are directional, the have a “memory” of their
original position, thus, when the load is removed, they return to its original position
and the body recovers its initial geometry and dimensions. When the temperature is
greater than 0.8 Tg, plastic deformation occurs by molecule sliding, due to the
melting of the cross links. When the chains are totally unfolded, the strength is
provided by the primary bonds in the chains, so the stress-strain behavior becomes
brittle until the point where the material breaks. This behavior is called cold
drawing, and its typical stress-strain curve is depicted in Fig. 5.22.

The failure of polymer can also occur by a mechanism called crazing, which is
the formation, growth and interconnection of internal voids, where the voids con-
tain fibrillary bridges of molecular chains that maintain the toughness until they
break, enabling the propagation of a macroscopic crack along the direction per-
pendicular to the maximum principal stress direction. Crazing does not occur in
compression, nor at low or high temperatures, with respect to Tg, and depends on
the degree of crystallinity. Figure 5.23 shows a scanning electron microscope
image of a crazing void in a thermoplastic polymer.

Another failure mechanism of polymers is shear banding, which consist on the
formation of highly localized shear deformation bands in the directions of the
maximum shear stress, so shear banding can occur in materials stressed in tension

Table 5.3 Mechanical properties of some elastomers frequently used in the manufacture of
mechanical components

Elastomer Tensile
strength (psi)

% Dl Density
(gr/cm3)

Use

Polysopropene 3000 800 0.93 Tires for light use

Polybutadiene 3500 800 0.94 Automotive rubbers

Polyisobutilene 4000 350 0.92 Pipes, insulation,
coatings

Polycloroprene (neoprene) 3500 800 1.24 Hoses, bands, wire
insulation

Butadien-estirene (rubber
BS or SBR)

3000 2000 1.0 Car and truck tires

Butadiene-acronitrile 700 400 1.0 Gaskets, fuel hoses,
O rings

Silicon 1000 700 1.5 Gaskets, seals
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or compression, since in both cases, the shear bands lay at 45 degrees of the
principal stress direction, as derived from the Mohr’s circle. Under tension strain,
shear banding competes with crazing, but in compression, shear banding is the
predominant failure mechanism, since crazing occurs only in tension. However in
glassy polymers as well as thermoset polymers, shear banding is the dominant
deformation and fracture mechanism. In rubbery polymers the deformation of the
bands is by drawing of the polymer chains, so the fracture after shear banding is
brittle. Figure 5.24 shows an example of shear banding in a polymer.
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Fig. 5.22 Cold drawn behavior of a thermoplastic polymer up to failure

Fig. 5.23 Crazing in a
polymer. Image taken from
the article Molecular
dynamics of fracture in
polymers, www.home.iitk.ac.
in
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Fig. 5.24 Shear banding and
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Chapter 6
Fracture

Abstract This chapter presents a comprehensive introduction of the fracture
phenomena as the final stage of the mechanical behavior of engineering materials. It
begins with the basic concepts of fracture, the classification of fractures from the
engineering point of view and a brief description of the static fracture mechanisms,
namely cleavage and micro-void growth and coalescence. The chapter continues
with an introduction to fracture mechanics, starting with the analysis of cohesive
strength and the Griffith analysis of brittle fracture, to continue with the Irwin’s
linear elastic fracture mechanic approach, including the concepts of energy release
rate, the R-Curve, the stress intensity factor, and fracture toughness, and finishing
with an explanation of the Rice’s nonlinear fracture mechanics J-Integral and the
Wells’ CTOD analysis. The previous ideas are used to present an introduction the
fundamentals of structural integrity analysis. The final section of this chapter
explains the significance and practical aspects of the Charpy impact test.

6.1 Basic Concepts of Fracture

Fracture may be defined as the separation or fragmentation of a solid under the
action of stresses, that results in the formation of two new surfaces. The fracture is
considered as the culmination of the stress-strain process and it goes through three
stages:

I. Crack initiation or crack nucleation.
II. Crack propagation.
III. Final separation.

Depending on the amount of plastic deformation that precedes the fracture, it is
classified as ductile, if there is a noticeable plastic deformation and brittle if there is
little or no plastic deformation at all. The drawings in Fig. 6.1 depict the basic
features of these fractures. It is important to point out that this classification is valid
only from the engineering point of view, because some brittle fractures may
actually occur by plastic deformation mechanisms, with plastic deformation
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concentrated in a narrow region around the crack, thus the fractured piece may have
a brittle appearance at macroscopic scale.

The fractures in polycrystalline materials are classified by the path of the crack
through the microstructure, as shown in Fig. 6.2, this classification is:

• Intergranular, the propagation path is along the grain boundaries.
• Transgranular, the crack propagates across the grains, which in turn, is subdi-

vided into: crystalline, where the crack path is along a well-defined crystallo-
graphic direction and non-crystalline, where the crack path follows a path
independent of any crystallographic direction. In this last case the fracture plane
is usually perpendicular to the direction of the maximum principal stress.

When a fracture occurs under a single load application in a rather short time, it is
called static or overload fracture, and it can be ductile or brittle. On the other hand,
fractures may grow at slow rates or occur by increments through time, in such case,
it may be by one or a combination of the following mechanisms:

Little or no 
deformation

Parts match 
perfectly

Plastic strain

Fibrous 
fracture 

Visible plastic 
strain

Elastic strain

Small plastic zone 
at the crack tip

Brittle Ductile Brittle with ductile 
mechanism

Fig. 6.1 Classification of fracture in terms of the amount of preceding plastic deformation

Intergranular Transgranular

Grain boundary

Fig. 6.2 Classification of fracture by the path through the microstructure in polycrystalline
materials
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(1) Fatigue: a fracture that results from repetitive or fluctuant load cycles.
(2) Stress Corrosion Cracking: also known as environmental fracture, is a gradual

cracking mechanism caused by the synergistic action of a susceptible material
under sustained stresses in a corrosive environment.

(3) Creep fracture: it is the propagation of cracks under conditions of creep, which
is the deformation through time and under constant stress at high temperatures.

These types of fractures gradually progress until the crack reaches a critical size
and then the crack accelerates to high growth rates, typically a fraction of the speed
of sound, and the component fails in a very short time (few seconds or less).
Therefore, the final stage of fracture is always an overload fracture, which can be
either ductile or brittle.

6.2 Static Fracture Mechanisms

Cleavage. The dominant mechanism of brittle fracture is cleavage, which is the
direct separation of a plane by the rupture of atomic links under a tension stress.
The most representative model of cleavage is a pair of parallel atomic rows, being
separated by a tensile stress, as depicted in Fig. 6.3. The fracture plane is called
cleavage plane, which, in crystalline materials is a low-index plane, but it is not the
most compact one. Some structures, such as ƒcc do not exhibit cleavage, except in
special conditions, such as heavy cold work. The glassy polymers, ceramics and
rocks typically fracture by cleavage, while amorphous materials exhibit cleavage in
a macroscopic way, with a fracture plane perpendicular to the maximum principal
stress direction.

In polycrystalline metals, cleavage produces smooth facets, oriented in different
angles, which make the fracture look grainy and shiny. At microscopic level, the
main feature of cleavage is a fine topography on the grain facets, known as “river
pattern”, with the appearance shown in Fig. 6.4.

The river pattern is formed by the rotation of the cleavage planes when the crack
passes form one grain to another. In order to keep continuity, the rotation is done by
increments, or “steps”, whose edges form the river pattern, as schematically shown
in Fig. 6.5. The name “river pattern” was given because the lines look like several
small rivers going downstream and joining to form one large river.

Cleavaje
plane

Stress normal 
to the plane 

Crack propagation

Fig. 6.3 Atomic model of a fracture by cleavage
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Ductile fracture. The basic mechanism of ductile fracture is the nucleation,
growth and coalescence of micro voids. Micro voids are formed at inclusion par-
ticles by the triaxial stress that appear once the neck is formed in the tension
strained material. This mechanism illustrated in Fig. 6.6. It initiates when the tri-
axial stress in the neck region causes decohesion of inclusion particles, forming
numerous voids that grow by plastic deformation and eventually interconnect
forming an internal cavity. As the deformation goes further, the reduction of
transversal area increases the stress until the material fails by shear strain.

Since the maximum shear plane is located at about 45° from the tension axis, the
final fracture will leave a shear lip that gives a cup-shaped border in one side and a
cone in the opposite face, this is why this type of fracture is known as cup and cone.
At microscopic scale, the central region of the ductile fracture is made up of
numerous dimples, which are the halves of the microvoids that coalesced prior to the

Fig. 6.4 Microscopic appearance of a cleavage fracture in a polycrystal, showing the
characteristic river pattern. Scanning electron microscope image

Cleavage plane

Continuation of the cleavage 
plane in the next grain

Fracture propagation 
direction

River pattern

Grain boundary

Fig. 6.5 Formation of the river pattern due to the rotation of the cleavage plane from one grain to
other
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final separation, as seen in Fig. 6.7. The depth of the dimples is proportional to the
ductility level, so very ductile materials will exhibit deep dimples and less ductile
materials will show shallow dimples. It is common to observe the void initiation
particle in the bottom of the dimples; if the particle is not visible it may be in the
other side of the fracture.

6.3 Fracture Mechanics

Fracture mechanics is the part of solid mechanics that studies the effect of a crack in
the mechanical strength of structural and mechanical components. It also allows to
determine the fracture resistance of materials and provides a methodology to study
the crack growth processes. Since the fracture of a structural or mechanical com-
ponent means the end of its service life, or the failure of the fabrication process, the
study of fracture mechanics is fundamental to assess the in-service performance and
to properly design the fabrication processes that involve plastic deformacion.

Fracture mechanics studies the quantitative relations that lead to fracture, con-
sidering the following factors:

1. Mechanical properties. Elastic constants, tensile strength, fracture toughness,
ductility.

2. Geometry and dimensions. Shape, cross section size, load application points.
3. State of stress. Plane stress, plane strain, pure shear, combined states.
4. Type, orientation and size of cracks.
5. Fracture mechanism: Brittle, ductile, fatigue, stress corrosion cracking, creep.

In practice, fracture mechanics seeks to answer three fundamental questions:

1. What is the load or stress that causes fracture?
2. What is the crack size that produces fracture under a given load?
3. How long does it take a crack to grow?

Neck

Inclusion 
particles

Triaxial 
stress 

Void 
nucleation 
and growth

Void coalescence
forming an 
internal crack

Cup

Cone

Shear rupture

Fig. 6.6 Ductile fracture mechanism in tension by nucleation and coalescence of microvoids
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A description of the basic principles of fracture mechanics, starting with the
estimation of the theoretical strength, going through the introduction of the stress
intensity factor and fracture toughness and culminating in its application on fracture
strength calculation is presented in the next paragraphs.

Cohesive strength. According to the cleavage mechanism, a fracture stress must
be sufficient to separate the atomic planes; based on this, the fracture strength is the
cohesive strength. The atom bond strength (r) varies according to the atom sepa-
ration (x), as shown in Fig. 6.8.

The theoretical cohesive strength (r*) is the maximum of the r versus x curve,
reached at x = ao/2, as the atom separation further increases, the atom bond strength
is reduced, so the fracture process is irreversible. The variation of the atom bond
strength as a function of the atom separation is given by this equation:

Fig. 6.7 Microscopic appearance of a ductile fracture by nucleation and coalescence of micro
voids. Scanning electron microscope image

Fig. 6.8 Cohesive strength model
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r ¼ r�sen
2px
a0

� �

If the term 2px/ao is close to zero, the next approximation is valid:

r ¼ r�
2px
a0

� �

Assuming that the separation of planes produces an elastic deformation, given by
the Hooke’s law, as to e = r/E, where E is Young’s modulus, and e is the elastic
strain, equal to x/ao, thus:

r�
2px
a0

� �
¼ E

x
a0

Solving for the cohesive strength:

r� ¼ E
2p

Substituting typical values of E (for most metals E is in the range of hundreds of
GPa) it can be seen that the cohesive strength is much greater than the experimental
stresses to produce cleavage, which are in the range of hundreds of MPa, that is
10–100 times larger. However, since cleavage is a real phenomenon, the logical
conclusion is that there must be a condition that reduces the fracture stress or that
concentrate stress high enough to reach the cohesive strength in solid materials.

The effect of the presence of defects in the strength of a material was analyzed by
Inglis1 in 1913, according to the following procedure. In an infinite plate with a
central elliptic hole of length 2c and ratio at the tip equal to r, the maximum stress at
the tip of the hole is given by:

rmax ¼ r 1þ 2

ffiffiffi
c
r

r� �

If r approaches to zero, the previous equation may be reduced to:

rmax ¼ 2r

ffiffiffi
c
r

r

Assuming a microscopic hole, similar to crack, of length c = 10−6 m (one micron)
and r = 3 � 10−10 m (typical length of an inter-atomic space in iron), the stress at
the tip of the hole increases more than 115 times, sufficient to reach the cohesive

1Inglis [1].

6.3 Fracture Mechanics 161



www.manaraa.com

strength. This reasoning encouraged the idea that fracture was related to the pres-
ence of defects in the material.

In 1920 Alan Arnold Griffith made a significant input to the prediction of the
fracture stress by stating that fracture is the result of a process of energy transfer.
Griffith was an English engineer, graduated from University of Liverpool, who
worked in the Royal Aircraft Factory, and later in Rolls Royce. In addition to his
contribution to the study of fracture, Griffith designed the axial flow turbo-engines
and was pioneer in the technology of vertical takeoff and landing of fixed-wing
aircraft.

According to Griffith,2 a crack will propagate when the elastic energy stored in
the body is released at a rate that equals the creation of surface energy as the crack
grows. The demonstration of the Griffith criterion is as follows:

Consider an elastically strained plate with a central crack, as shown in Fig. 6.9.
The stored energy is:

U ¼ pr2a2

E

where: r is the applied stress in the plate, a is the crack size and E is Young’s
modulus. In a completely brittle fracture (without plastic deformation), the work
supplied by the loads is stored as elastic potential energy and is consumed to create
two new fracture surfaces. If the stored energy is U and the surface energy is cs, the
energy balance is:

DU ¼ Uþ 4 cs a

As the crack propagates, the conversion rate of stored energy should be equal to the
rate of increment of surface energy. Mathematically, this is expressed as:

dDU=da ¼ 0

Fig. 6.9 Griffith´s model of brittle fracture. Left: thin plate with a central crack. Center:
stress-strain record. Right: Conversion of the stored energy U into surface energy cs

2Griffith [2].
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Substituting terms and solving for stress, the Griffith’s equation for fracture stress is
obtained:

r ¼
ffiffiffiffiffiffiffiffiffiffi
2Ecs
pa

r

In order to verify his theory, Griffith measured the surface tension of silicon glass
fibers of 2 in. long and 0.01 in. diameter (E = 9010 ksi, v = 0.251, ruts = 24.9
ksi), tested at temperatures ranging from 750 to 1100 °C, out of which he deter-
mined the surface energy (0.0031 1b-in). Then, he made hollow spheres of the same
glass, introducing cracks with a cutter and pressurizing them until rupture. His
experimental results varied ±10% with respect to his predictions. Despite the
fracture stresses of very brittle materials, such as glass and white iron, calculated by
Griffith were very close to the experimental values, the Griffith’s equation was
rarely applied due to the great difficulty to determine the fracture surface energy of
engineering materials.

The energy criterion. Georges R. Irwin, born in El Paso, Texas on February 26,
1907, was a physicist graduated from The Illinois University. He began his career in
1937 at the U.S. Naval Research Lab, working in ballistics and developing, among
other, the anti-bullet vest. In 1946 he was in charge of the studies of the Liberty ship
fracture problem. Based on Griffith’s ideas Irwin developed the Linear Elastic
Fracture Mechanics (in honor to Griffith, Irwin used the letter G as symbol of the
energy release rate). In 1967 he was appointed “Boeing University Professor” at
Lehigh University and in 1972 he moved to Maryland University. He received
numerous awards, including the Gold Medal of The American Society for Metals.
He died on October 9th, 1998.

Irwin3 restated Griffith’s postulate and proposed that the energy release rate in a
cracked body must be equal to the demand of fracture work, so as to make a crack
propagate spontaneously. Irwin named this condition as instability and conse-
quently when the energy release rate is insufficient, the crack does not propagate, so
it is said that it is stable. Just as in Griffith’s criterion, the available energy in a
cracked body under load comes from the work done by the loads, which is stored in
the body as elastic energy. Each of these contributions is calculated as follows.

Assuming that a perfectly elastic body has a crack of length a, under a load P,
the load-displacement record would be as shown in Fig. 6.10. If the crack extends a
magnitude Da and the load is fixed, the crack faces will have an opening dis-
placement equal to DV, and the load point will shift from A to B, thus, the energy
used by the crack extension is the area within the triangle OAB.

The balance of energy can be expressed as:

U ¼ F �W

3Irwin published his work for the first time in [3].
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where U is the stored energy, F is the work supplied by loads and W is the work
necessary to make the crack grow. Since the crack growth is produced by the
energy conversion as the crack extends. Irwin introduced the concept of energy
release rate (G), which is expressed mathematically as:

G ¼ dðF � UÞ
da

Then, if R is the amount of work needed to cause crack extension, R is the fracture
resistance and can be written as:

R ¼ dW
da

Based on this analysis, Irwin postulated the Energy Criterion of fracture, as:

If G[R; the crack propagates

So far, Irwin’s analysis is identical to that of Griffith’s, but Irwin’s merit was
being able to express the energy release rate as a function of an easy to measure
parameter, which is the compliance (C), defined as the inverse of the
load-displacement curve slope. The analysis carried out by Irwin in order to
experimentally determine the values of G and R is described as follows:

0

A B

C
Lo

ad
, P

a

P = Constant

a+ a

Displacement, V

Fig. 6.10 Load-Displacement record of a plate with a crack under tension. If the crack extends
under a fixed load, the displacement increases from A to B. If the displacement is kept constant,
the load drops from A to C as the crack grows
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From Fig. 6.10, the area under the straight line 0A is ½Pv, which represents the
stored energy U. By expressing U in differential form by unit thickness B, it is
obtained that:

dU ¼ 1
2
P v
B

On the other hand, the differential work carried out by the load is:

dF ¼ P v
B

Substituting into the definition of G:

G ¼ 1
B

P
d v
da

� dð1=2P vÞ
da

� �

If C = v/P, then v = C P and substituting the previous equation:

G ¼ 1
B

P
d CP
da

� 1
2
dðP2CÞ

da

� �

For constant load conditions:

G ¼ P2

B
d C
da

� 1
2
dC
da

� �

Which results in:

G ¼ P2

2B
dC
da

� �
P

Constant load

For conditions of constant displacement, (dv/da = 0), therefore:

G ¼ 1
B

�dð1=2PvÞ
2a

� �

Thus:

G ¼ � P2

2B
dC
da

� �
v

Constant displacement

Notice that G changes of sign whether the crack extension occurs under constant
load (G positive) or constant displacement (G negative) conditions. This has
enormous practical consequence, since it means that in a crack propagating under
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constant load conditions, the energy release rate increases as the crack grows,
therefore, the more it grows, the more energy is available for propagation, so the
process will be self-accelerated, leading to crack instability. In opposition, under
constant displacement conditions, the energy release rate diminishes as the crack
grows, so the propagation will be decelerated until crack stops growing, setting the
conditions for crack arrest.

Stress intensity factor. Although the Irwin approach allows the experimental
determination of the fracture resistance, its practical application still turns out to be
complicated, since the value of G depends on the geometry, crack size and load
conditions. To solve this problem Irwin related the values of G and R with a much
more convenient parameter which is the Stress Intensity Factor, represented by the
symbol K.

To define K, Irwin used the solution of the stress distribution around the crack tip
of an elastically strained infinite plate obtained by Westergard4 a few years earlier.
Figure 6.11 shows a coordinate system (x, y) with origin at the crack tip, that
defines the stress tensor components of a volume element located at the (h, r)
coordinates from the crack tip.

Westergard found that the stress components around the crack tip are determined
by the following equation:

rij ¼ r

ffiffiffiffiffi
a
2r

r
fijðhÞ

Irwin observed that for a given position (r, h), the magnitude of the stress depends
on the term r(pa)½, which he defined as:

KI ¼ r
ffiffiffiffiffiffi
pa

p

where KI is the Stress Intensity Factor. The subindex I refers to the Mode I, or
opening mode, of the displacement of the crack surfaces. Irwin demonstrated that
the energy release rate in a cracked body, in linear elastic strain conditions is related
to K, according to the following equations:

G ¼ K2

E
Plane stress

G ¼ K2

E
ð1� m2Þ Plane strain

According to this result, the energy release rate G is proportional to K, so when
G = R, K will reach a critical value and the crack will propagate. This critical value
of K has been termed as fracture toughness and it represents the crack extension
resistance of a material under conditions of linear elastic strain.

4Westergard [4].
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Irwin’s analysis is the basis of Linear Elastic Fracture Mechanics, which can be
summarized by the following principle of similitude:

Cracks in different bodies, with different loads but the same K, have the same behavior.

The practical applications of this principle consists of determining the crack
resistance in a laboratory test, of a cracked specimen with known K. The specimen
is tested by an increasing-force machine, and the fracture load and the crack size at
the onset of instability are determined, and Kc is determined. Then, with this value,
the fracture load of a structure is calculated, provided K and the crack size are
known. This procedure is schematically illustrated in Fig. 6.12.

The R-Curve: The energy criterion can be graphically represented by a plot of
[G, R] versus [Crack Size] known as the R-Curve. For convenience, the initial crack
size (ao) is plotted to the left of the origin and the crack extension (Da) to the right.
The R and G functions are drawn on the right side of the graph. The construction of
the R-Curve is as follows:

The stress intensity factor of an infinite plate with central crack, under uniform
stress is given by:

K ¼ r
ffiffiffiffiffiffi
p a

p

x

y

r

xx

yy

xy

Crack length (a)
θ

τ
σ

σ
Fig. 6.11 Two dimension
coordinate system around the
crack tip in an infinite plate

Fig. 6.12 Application of the fracture mechanics similitude principle. The fracture strength, Kc is
determined. Kc is used to calculate the failure stress of a component the K and the crack size are
known
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Using Irwin’s equation for plane stress:

G ¼ K2

E

Substituting K into G, the following equation is obtained:

G ¼ pr2a
E

This equation is plotted, along with the R function, as shown in Fig. 6.13. Notice
that the G is a straight line with slope equal to pr2/E. In this case, R is independent
of a, so its plot is a horizontal straight line.

The point A in the R-Curve corresponds to the conditions: r = r1, a = a0, and
G < R, thus the crack will not propagate, and it is in stability. To initiate crack
propagation, the crack has to grow an extension Da, up to the point where a = ac in
order to meet the energy criterion (G = R), this is point B. The other option to
initiate instability is that the stress increases up to r2, where, once again, G = R,
point C. Notice that in both cases, as the crack grows further, G is increasingly
greater than R, therefore there is more and more energy release, so the crack
propagation accelerates, setting full instability conditions.

In materials that fail after some plastic deformation (ductile fracture), R is not
constant, but it increases as of the crack grows; so, the R-Curve has the shape
shown in Fig. 6.14. In this case, for the crack size a0 under a r1 stress, G < R, and
the crack is stable (no extension). If the stress is increased to r2, then G > R, and
the crack will grow to some extension Da, until G becomes smaller than R and the
crack will stop. The crack extension Da is called “pop-in” and is regarded as a short
term stable crack growth. Finally, if the stress increases to r3, G > R and the crack
will grow under instability conditions. The tangential point of the G and R curves
indicates the critical crack size ac. Notice that if the initial crack size is longer, the
critical size will be reached at a lower stress, but the stable extension will be larger.

Fig. 6.13 R-Curve for an infinite plate with a central crack, R constant
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6.4 Fracture Toughness

The standard test to determine the Plane Strain Fracture Toughness, identified by
the symbol KIC, was introduced in 1970 under the designation ASTM E 399, years
later the test was grouped along with other fracture toughness tests in the ASTM E
1820 standard. The KIC value is referred as plane strain because, for this condition
its value is independent of the thickness and therefore it is a material property. The
subindex I refers to Mode I crack displacement (tension opening). The test consists
of loading up to fracture a standard specimen containing a fatigue crack emanated
from a machined notch. During the test, the load (P) and the crack mouth opening
displacement of the specimen (V) are recorded. From this record, the fracture load
(PQ) is determined, while the critical crack size (ac) is determined by fractographic
examination of the fractured specimen. Then, using the K function of the test
specimen, the KIC value is determined.

Since at the beginning of the test there is no certainty that the conditions of
linear-elasticity and plane strain are achieved, the validity of KIC must be verified.
For that, a conditional fracture load PQ, is determined from the P versus V record, as
shown in Fig. 6.15. The Type I record is limited plasticity, where PQ is the load
value at the intersection of a straight line with a slope reduced 5% with respect to
slope of the OA line of the P versus V curve. This value is represented by the
symbol P5. The Type II record shows upper yield, in this case, PQ is the maximum
load preceding P5. Finally, Type III corresponds to the ideal case (linear record) and
PQ = Pmax.

Once the value of PQ is known, a conditional value of the fracture toughness KQ

is calculated, then, the following criteria should be verified:

ðW � aÞ\2:5 ðKQ=rYSÞ2

Fig. 6.14 R-Curve for R dependent on the crack size
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Pmax=PQ � 1:10

where B and W are the width and thickness of the specimen respectively, and rYS is
the 0.2% yield strength in tension. If the preceding criteria are met, then the KQ is
equal to KIC, otherwise test is not valid, and a larger specimen will be required in
order to meet the linear-elastic and plane strain requirements.

The following examples illustrate the above procedure:

Example 1 The load-displacement record shown below was obtained from a CT
specimen, 50 mm thick and 10 mm wide, of a steel with rYS = 1000 MPa. If the
critical crack size was 50 mm, determine KIC and verify if the test is valid.

Load
P

(-5% slope)  = 0.119 MN

Pmax = 0.125MN

Displacement, V

Pa

W = 100 mm

B = 50 mm

ac = 50 mm

Solution Verification of the linearity condition:
Pmax=PQ ¼ 0:125=0:12 ¼ 1:05\1:1, the test is valid in terms of linearity.

Displacement, V

L
oa

d,
P

O

A A
PQ = P5%

Pmax
PmaxPQ

P5%

TYPE I TYPE II TYPE III

Pmax

Fig. 6.15 Typical load-displacement records of a fracture toughness test for determining the
fracture load PQ
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Calculation of KQ: the equation of K1 for the CT specimen is:

K ¼ P=ðBW1=2Þ f ða=WÞ

For (a/W) = 0.5; ƒ (a/W) = 9.66, substituting data:

KQ ¼ PQf ða=WÞ=ðB=pWÞ ¼ 0:125ð9:66Þ=ð0:05p0:1Þ ¼ 76:4MPa
p
m

Applying the thickness criterion:

2:5ðKQ=rYSÞ2 ¼ 2:5ð76:4=1000Þ2 ¼ 0:015m ¼ 15mm\ðW � aÞ ¼ 100�50mm
¼ 50mm

Since the size of the ligament (uncracked section of the specimen before fracture) is
greater than the required ligament size, the test is valid and KIC = 76.4 MPa√m.

Example 2 A structural steel has a rYS = 550 MPa and an estimated fracture
toughness KIC = 70 MPa√m. Calculate the width and thickness (W, B) of a CT
specimen in order to carry out a valid test.

Solution To meet the plane strain requirement, the width W, assuming a crack size
a = 0.5 W, should be:

ðW � aÞ ¼ 0:5W [ 2:5ðKIC=rYSÞ2 ¼ 2:5ð70MPa
p
m=550MPaÞ2 ¼ 0:0405m ¼ 40:5mm

W [ 2� 40:5mm ¼ 81mm

For a CT specimen, B = W/2 = 40.5 mm, so a CT specimen of, at least, 41 mm
thick and 81 mm wide meets the requirement.

The thickness and linearity requirements of the Standard ASTM E399 limit the
application of the plane strain fracture toughness test to brittle materials. For
example, for a forged steel with rYS = 350 MPa and KIC = 150 MPa√m, the
required thickness of a CT specimen is B = 2.5 (150/350)2 = 0.459 m = 45.9 cm
and thus, W = 2B = 91.8 cm. A CT specimen with such dimensions would weight
about 2000 kg. Additionally, the test machine should have a load capacity of about
10,000 kN. A testing machine of such capacity is expensive and the cost and
difficulty to machine and handle a test specimen that size make the test prohibitive.
Table 6.1 shows some KIC values for materials commonly used in engineering and
the widths recommended for a KIC valid test using CT or SEB specimens.

Elasto-plastic fracture strength. It is clear that the KIC test is valid only when
the crack-tip plastic zone is limited to a small zone contained within the ligament, in
such a way that the load-displacement behavior is mostly linear. However, when the
material is very ductile, the load-displacement curve exhibit large deviations from
linearity, as shown in Fig. 6.16, which invalidate the KIC test result, thus a different
fracture criterion has to be used.
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In 1968, James RRice5 developed the J-integralmethod that became a fundamental
parameter for the characterization of crack behavior in non-linear load-strain condi-
tions. From 1964 until 1981, Rice was an assistant professor at Brown University,
previously, in 1962 he graduated from Lehigh University, where he took courses with
the pioneers of modern fracture mechanics, such as: Fazil Erdogan, George Sih and
Paul Paris. He got M.S. and Ph.D. degrees in 1963 and 1964, respectively. Since 1981
he is professor at the Geophysics department of Harvard University. In 1994, he
received the Timoshenko Medal, in 1996 he was awarded The Franklin Institute’s
Francis J. Clamer Medal, and in 2016 he was awarded the ASME Medal.

Table 6.1 Typical yield strength values, fracture toughness and minimum required width of a
valid specimen for KIC determination

Material rYS (MPa) KIC (MPa√m) B minimum (mm)

High strength steel 1965 57 2.1

Steel quenched and tempered 1830 47 1.65

Forged steel 350 200 816

Structural steel 240 >220 2100

Titanium Al-V 1100 38.5 3.1

Aluminum 7075 T651 550 30 7.4

Aluminum 2024 T3 390 34 19

P PPmax

Pmax > 1.1 PQ

Plastic zone Plastic zone

Displacement, v Displacement, v

a a

PQ
PQ

Linear-Elastic Non-linear

W W

Fig. 6.16 Load versus Displacement records of a cracked body made of linear-elastic material
(brittle), and non-linear behavior, ductile material

5Rice [5].
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From the physical point of view, the J-integral is the energy balance around a
closed path around the crack-tip, as illustrated in Fig. 6.17. The balance is between
the work supplied by the tractions T actuating over surface elements ds of a closed
path C and the strain energy within the limits of this path.

As the J-integral is path-independent, the integration can be done at any distance
from the crack-tip, and the energy change due to the crack extension can be cal-
culated whether the stress-strain behavior is linear or non-linear.

Rice showed that when the plastic strain is within a narrow stripe in the ligament,
as shown in Fig. 6.18, the J-intergal value is given by:

J ¼ 2A
BðW � aÞ

where A is the area under the Load-Displacement curve limited by a parallel to the
elastic portion of the curve, drawn from the displacement up to where is desired to
calculate J, as shown in Fig. 6.18.

To include the contribution of the elastic portion, total J is given by:

J ¼ K2

E
ð1� m2Þþ 2A

BðW � aÞ

The J-integral can be used for the analysis of elastic-plastic fracture, because it is
equivalent to the energy release rate G, which means that J = G. Rice also
demonstrated the equivalence between K and J by the following equations, that are
valid as long as the plasticity is not extensive.

J ¼ G ¼ K2

E
Plane stress

J ¼ G ¼ K2

E
ð1� m2Þ Plane strain

a

ds

Tractions (T)

Arbitrary path 
function ( )

y

x

STORED
ENERGY = WORK DONE BY THE 

TRACTIONS ON 
STRAIN ENERGY INSIDE 

THE PATH-

Fig. 6.17 Energy balance of a closed path around a crack
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The J value can be calculated for different geometries and load conditions, through
several methods such as: experimental strain measurement, compliance, finite
element modeling, etcetera; being all of them complex and time consuming. The
critical value of J is designated as Jc and it is a conservative measurement of
fracture toughness, as it represents the J value at which a 0.15 mm stable extension
of the crack (pop-in) occurs. The procedure to evaluate JIC is described in standard
ASTM E-1820 as well as in the British Standard BS-7448. Figure 6.19 summarizes
this method.

The crack-tip opening displacement criterion: In 1961, Alan Wells6 proposed
a failure criterion based on the observation that the fracture initiates after the tension
strain at the crack-tip exceeds a critical value, as shown schematically in Fig. 6.20.
Wells proposed that the deformation in the direction perpendicular to the fracture
plane, named Crack Tip Opening Displacement, represented by CTOD, may be
used as a fracture criterion because it is related to the stress intensity factor by the
following equation:

CTOD ¼ 4
p

K2
I

ErYS

The advantage of the use of CTOD as fracture criterion is that it is not limited by
linear conditions, such as KIC, nor restricted plasticity, like JIC, so it may be applied
in conditions of generalized plastic deformation. Similarly, the CTOD may be

Lo
ad

,P
Displacement, V

Area, A

Crack

Plastic zone

Ligament

Elastic line

Fig. 6.18 Condition of the plastic zone and area under the Load-Displacement record to calculate
J, according to Rice

6Wells [6].
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applied to short cracks and high toughness materials. These reasons make the
CTOD a very useful parameter to characterize fracture toughness of welds and high
ductility materials. The procedure to evaluate CTODC is described in standard
ASTM E-1820.

Fig. 6.19 Summary of the standard method to evaluate JIC. Data may be obtained from multiple
specimens or one to which several load-unload cycles are applied. The data within the valid region
are adjusted to a straight line which intersection with the plasticity line at Da = 0.15 mm gives the
value of JIC

CTODc

P = 0

Pcritical

Plastic blunting

Stable extension

CTOD = 0

P

Displacement, V

CTODc

P > 0

Fig. 6.20 Justification of CTOD as fracture criterion
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6.5 Structural Integrity

The main contribution of fracture mechanics to structural engineering is that it
allows to calculate the fracture load and the crack size of a stressed component
containing crack-like flaws. These two values constitute the remaining strength and
the critical flaw size, which are the teoretical foundations of Structural Integrity, or
Fitness-For-Service technology, that merged in the last part of the XX century and
nowadays is the main maintenance and reliability strategy of process equipment,
building and bridge structures, pipelines, reactors, boilers, pressure vessels and
aircrafts, among others, all over the world. The Structural Integrity may be defined
as the capability of a mechanical or structural component to bear the imposed loads
during a determined time, in a safe way (without failure), while containing defects
detected and sized by nondestructive examination.

The remaining strength allows to determine the operating load level that can be
applied to a flawed component without risk of failure, which is a necessary infor-
mation if the Owner/User of a component has to decide of whether or not keep it
in-service, or to shut it down and perform a repair. This is very convenient in cases
like a submarine pipeline, which due to accessibility limitations cannot be immedi-
ately repaired, but the service cannot be interrupted neither. The structural integrity
methodology allows to determine if there is a safe operating pressure, along with a
maximum allowable flaw size, which are a fraction of the remaining strength and the
critical crack size respectively, so the decision of continue operation or shut down can
be taken under technical reasons. Furthermore, if the flaw growth rate is known from
laboratory tests or field experience, and the operating conditions are reasonably
constant, the remaining life may be calculated, as the time elapsed from the moment
of detection of the crack to the time when it reaches its critical size. This information
may be used to establish the detection limits for a non-destructive inspection program
as well as the safe operating windows of the flawed component, thus preventing
failures, saving money by reducing the number of repairs and ultimately increasing
the service life of components that otherwise would be scheduled for substitution.

The remaining strength, being the failure load, can be calculated from the general
equation of K, if the component containing a crack-like flaw is working within the
elastic regime, which is mostly the case. The equation for K may be written as:

K ¼ Y rA
ffiffiffiffiffiffi
pa

p

where Y is a geometric factor, rA is the applied stress and a is the crack size. If
K = KIC, and the previous equation is solved for P, an equation for the failure stress
is obtained.

rf ¼ KIC

Y
ffiffiffiffiffiffi
pa

p

A plot rf versus a of the previous equation gives the Remaining Strength Curve
(RSC), which is depicted in Fig. 6.21. As it can be seen, the RSC goes to infinity as
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the crack size approaches to zero and is asymptotic for very large crack sizes.
Neither situations are real, because, the strength cannot be higher than the material’s
strength, and the crack size cannot be larger than the component’s width. Therefore,
there should be a minimum and maximum crack size for which the linear-elastic
fracture mechanics calculations of the remaining strength are valid.

A simple approach to determine the valid limits for the calculation of the
remaining strength by linear-elastic fracture mechanics is as follows: consider a
rectangular plate of thickness B and width W, which contains a central crack of
length 2a. The applied stress may be calculated as rA = P/BW; if the cracked area
is rectangular, the remaining cross-section, referred as the ligament, can be calcu-
lated as B(W-2a), then the net stress rN can be written as:

rN ¼ P
BðW � 2aÞ

Multiplying and dividing by W, the term P/BW can be replaced by rA to obtain:

rN ¼ rA
W

ðW � 2aÞ

Now, taking the criterion that failure by generalized plastic deformation will occur
when the stress in the ligament equals the ultimate tensile strength, the applied
stress becomes the net-section remaining strength, thus:

rf ¼ ruts 1� 2a
W

� �

Plotting this equation in the RSC, the limits of the applicability of linear elastic
fracture mechanics can be determined assuming the criterion that the remaining
strength will be the least calculated by each method, as depicted in Fig. 6.22.

Fig. 6.21 Remaining
Strength Curve calculated by
linear elastic fracture
mechanics

6.5 Structural Integrity 177



www.manaraa.com

The RSC may be effectively used to perform Fitness-For-Service assessments,
according to the following criteria:

• The maximum allowable flaw size is the one that gives a remaining strength
equal or greater than the design stress or the proof stress, for example the stress
resulting of the hydrostatic test of a pressure vessel or piping. Any crack-like
flaw of this size or smaller will be accepted during the quality control inspection
of a new component.

• The critical flaw size is the one that gives a remaining strength equal to the
applied stress under normal operating conditions or a minimum stress level
specified by the user. Any flaw of this size or larger implies an imminent risk of
failure, therefore, upon detection the operating load has to be reduced to a safe
value, which can be determined from the RSC, until a corrective action is taken.

• The assessment of flaws of sizes between the maximum allowable flaw size and
the critical flaw size is done by calculating the safety margin between the normal
operation stress and the remaining strength calculated for a given flaw size. The
lesser the safety margin the greater severity of the defect, and therefore the
urgency of a corrective action. The defect severity levels may be established by
the user of in conjunction with structural integrity experts.

• The remaining life can be determined from the RSC if the flaw size is converted
into elapsed time, dividing it by the growth rate. It is important to mention that
the remaining life calculated in this way should not be taken as a warranty of a
time of use, or the time to take a corrective action, but it should be used to
determine an appropriate monitoring program. Most Integrity Management
Plans recommend that a corrective action, whichever it is, is taken at no later
than one half of the remaining life.

Fig. 6.22 Remaining Strength Curve determined by the combination of linear elastic fracture
mechanics and net-section methods
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Figure 6.23 depicts the above described parameters in a schematic way. It is
worth to mention that a RSC should be specific for a combination of material,
environment and service conditions, and it is valid as long as these conditions are
reasonably constant. Also it is responsibility of the structural integrity engineer to
apply the appropriate safety factors to the material properties, flaw sizes and service
loads, as well as, to establish the level of conservadurism in the determination of the
remaining strength and the critical flaw size.

The ability to obtain the RSC of structural components of strategic importance in
the industry motivated extensive investigations to improve the accuracy of the
calculations of remaining strength, beyond the limitations of the net-section and
linear elastic fracture mechanics methods. As a result in 1975, Dowling and
Townley7 developed a crack assessment method that combined the linear elastic
fracture mechanics criterion for brittle fracture and an elastic-plastic fracture cri-
terion introduced by Doughdale, which is currently known as the Two-Parameter
Criterion. This method allows to assess brittle, elastic-plastic and plastic collapse
failures by using the following equation:

Kr ¼ Sr
8
p2

ln sec
p
2
Sr

� �� ��1=2

Kr ¼ KI

KIC

Sr ¼ rA
r0

Remaining 
strength/Stress 

level

Allowable flaw 
size

Flaw size or time Critical
flaw size

Normal 
operating 

stress

Failure

Design 
stress

Safe

Remaining life

Detected flaw 
Calculated 
remaining 
strength

Fig. 6.23 Remaining Strength Curve showing the parameters of a structural integrity assessment
of a component containing crack-like flaws

7Dowling and Townley [7].

6.5 Structural Integrity 179



www.manaraa.com

where KI is the applied stress intensity factor in Mode I, KIC is the plane strain
fracture toughness, rA is the applied stress and r0 is the yield strength. The plot Kr
versus Sr is known as the Failure Assessment Diagram (FAD) and has the form
depicted in Fig. 6.24. The use of the FAD is quite straight forward; if an assessment
point falls (A) within the envelope of the Two Parameter equation curve, the flaw is
stable and the component does not fail; if the assessment point falls on the boundary
or outside the envelope curve (F), the flaw is unstable and failure is imminent.
Additionally, since Kr and Sr both depend linearly on the load, a straight line traced
from the origin to the evaluation point will represent the load path; the distance
from the origin to the envelope is the failure load, therefore, the length of the
segment between the evaluation point and the envelope represents the safety margin
in terms of load.

In 1986, Milne, Ainsworth, Dowling and Stewart presented the report CEGB
R/H/R6 in England, which would be worldwide recognized as the R6 Code that
contained refined expressions for the FAD and greatly improved the accuracy of the
fracture mechanics calculations of the remaining strength of structural components
containing crack-like flaws. Nowadays the R6 Code is the base of the methods
provided by the international recognized standards of structural integrity, such as
the API 759-1/ASME FFS-1 “Fitness-for-Service” and the British standard BS 7910
“Standard Methods for Assessing Cracks”. The R6 Code is applied in the following
way:

1. Define the structural modes of failure as a function of the load line ratio, as
follows:

Kr=Sr[ 1:8 Brittle Fracture
0:2\Kr=Sr� 1:8 Elastic� plastic Fracture
Kr=Sr� 0:2 Plastic Collapse

Kr

0

1.0

Sr 1.0

A

F

SAFE

FAILURE

Load line

Load increase

Fig. 6.24 Failure
Assessment Diagram by the
Two-Parameter Criterion
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2. Provides options for the FAD equation, according to the desired level of
accuracy:

Option 1: Kr ¼ ð1� 0:14 Sr2Þ 0:3þ 0:7 expð�0:65 Sr6Þ	 

Option 2: Kr ¼ ðE eref =Srr0 þ Sr3 r0 = 2E eref Þ�1=2

Option 3: Kr ¼ ðJe=JÞ1=2

Where eref is the real strain at the applied stress, J is the J-Integral at the applied
load and Je is the elastic J-Integral of the structure.

3. The right end cut-off of the FAD has been expanded to consider strain hardening
behavior, being Lr = 1.15 for structural steels, Lr = 1.55 for C-Mn steels and
Lr = 1.8 for stainless steels.

4. The parameter Sr is replaced by Lr = LA/LLim to facilitate the analysis in con-
ditions where the stress is not uniform or a reference stress cannot be
established.

Figure 6.25 shows the FAD as presented in the standard API 579-1/ASME
FFS-1 2007.

6.6 The Charpy Impact Test

Brittle fracture is the most dangerous form of fracture, since it occurs very fast and
without noticeable plastic deformation that may give a warning indication. Carbon
steels are usually very tough at ambient and moderate temperatures, but at low
temperatures they become brittle, so many catastrophic failures have been caused
by this phenomenon. One of the most popular stories of brittle fracture is the Titanic
sink,8 but the most important from the engineering point of view was the Liberty
Ships case, that occurred just after the World War II. Figure 6.26 shows a Liberty
ship that broke into two pieces while docked in calm waters and without load in a
cold winter day.

The Liberty ships were the first ones fabricated by electric arc welding, which
revolution forever the steel construction industry. With this innovation with respect
to the traditional riveted hull technique, the construction time of ships more than
14,000 ton displacement and 135 m overall length was reduced from 244 days to
less than 42 days per ship. The USA fabricated around 2710 Liberty ships, a pace
greater than the German submarines could sink them (it is said that thanks to this
the Allies won the WW II), but more than 400 suffer major structural failures in the
hull, and more than 20 broke apart.

8The crash of the Titanic against the iceberg made a crack of about 1.5 m long that was not a high
risk for the ship’s structural integrity, however one theory proposes that the brittleness of the rivets
and the plates of the hull led to the formation of a more than 70 m long aperture that eventually
caused the sinking.
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After the war, in 1945, the US Congress commissioned the Navy Research
Center to study the causes of failure of the Liberty ships: one of the researchers was,
no one but George R. Irwin, the father of modern fracture mechanics. The inves-
tigations performed by the Navy used the Charpy impact test, introduced by the
French engineer Georges Charpy in 1901, and determined that the absorbed impact
energy Cv of carbon and low alloy steels fall sharply in a narrow range of tem-
peratures, as schematically shown in Fig. 6.27. This phenomenon was named
ductile-brittle transition, and since then it gets great attention, not only for design,
but also as a factor to consider in structural integrity assessments.

Fig. 6.25 Failure Assessment Diagram as presented in API 579-1/ASME FFS-1 2007

Fig. 6.26 Liberty ship that failed while docked in calm waters during a cold winter day
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The Charpy impact test, as it is used today is described in the ASTM Standard
E23 and ISO 148-1. It consists of breaking a standard specimen with a hitter
mounted on a pendulum. The specimen is a square bar of 10 � 10 mm and 50 mm
length, that contains a V notch of 60° and 1 mm depth in the middle. During the
test, part of the kinetic energy of the pendulum is absorbed by the fracture process
of the specimen, so the absorbed energy is the difference of potential energy
between the initial and final height of the pendulum. Figure 6.28 illustrate this
principle and a schematic of the apparatus set up for the Charpy test. The Izod test is
similar to the Charpy test, the only difference is that the specimen is held in vertical
position.

Perhaps the most important effect on the ductile brittle transition of carbon steel
is the carbon content. In general, as shown in Fig. 6.29, the higher the carbon
content, the lower transition temperature, which is a detrimental effect.

The effect of alloying elements and grain size on the Cv values of steel is shown
in Table 6.2. As a consequence, to prevent brittleness and weld cracking, a
parameter called Equivalent Carbon (CE) has been introduced by the International
Institute of Welding, which is calculated by the equation:

CE ¼ Cþ ðMnþ SiÞ
6

þ ðCrþMoþVÞ
5

þ ðNiþCuÞ
15

The element content is in wt%, and typically the value of CE is limited to 0.43 for
pressure vessels and hydrocarbon transport pipelines.

Even though the stresses and strains in the Charpy impact test specimen can be
measured, the values of Cv are not used to determine the fracture loads in fitness for
service assessments, neither for design, mainly because Cv is specific for the test
specimen. However, Cv values are widely used as a material specification to

Fig. 6.27 Typical Charpy impact energy as a function of temperature of a ferritic steel
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establish a minimum required toughness to prevent brittle fracture, as well as to
determine the minimum allowable working temperature as to prevent brittle
fracture.

The Cv versus T curve is also useful to compare the performance of materials in
terms of their tendency to brittle fracture as schematically depicted in Fig. 6.30. The
rule is that a material with higher Cv values at a given temperature is will have a
better performance, however the performance over a range of temperatures must be
examined before making a choice. At room temperature (Tamb) material A is better
than B because it has higher Cv values, but overall, material B is better because it
maintains higher toughness at low temperatures in comparison with material A.

Initial height
hi

Final height
hf

Specimen

Anvil

Hitter

Absorbed energy 
indicator, Cv

Pendulum

Fig. 6.28 Apparatus and principle of the Charpy impact test. Absorbed Energy Cv = Mg
(hi − hf), where M is the hitter mass, g is the gravity acceleration and h is the height. The strain
rate is 103 s−1

Fig. 6.29 Effect of carbon content on the absorbed impact energy of ferritic Steel
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Since Charpy impact tests are relatively easy and cheap to carry out, the Cv
values are often used to estimate plane strain fracture toughness KIC, which is a
much more difficult and expensive test. The Appendix 9F of the API 579-1/ASME
FFS-1 2016 Standard provides the Rolfe-Novak correlation to estimate the fracture
toughness in the upper shelf (above the transition temperature), which has the
following form:

KIC

rys

� �2

¼ 0:64
Cv
rys

� 0:01
� �

Table 6.2 Effect of the steel alloying elements and grain size on the behavior of Cv

Element Effect

Mn Reduces TT * 5 °C/0.1% Mn

P Increases TT * 7 °C/0.01% P

N Reduces TT

Ni Up to * 20% increases Cv

Si Reduces TT si %Si > 0.25

Mo Increases TT * 14°C/0.1% Mo

Cr No effect

O, H Sharply increases TT

Nb, V Reduces TT below −30 °C

Grain size Fine grain increases Cv and reduces TT

TTB TTA Tamb.

Cv A

B

Temperature

Fig. 6.30 Comparison of the performance of the ductile-brittle transition of two steels
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where KIC is in MPa√m, rys is in MPa and Cv is in J. By the use of these kind of
correlations, the structural integrity engineers can obtain the KIC values that they
need for their assessments, either from Cv data of the material specifications or from
Charpy test specimens extracted from the in-service components, which require less
material than the necessary to perform KIC standard tests. It is important to mention
that the Rolfe-Novak correlation gives lower bound values of KIC therefore the
integrity assessments done with them will be conservative.
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Chapter 7
Fatigue

Abstract This chapter presents a thoroughly description of the fatigue phenomena in
engineering materials, starting with an historical synopsis of fatigue failures, the
Wöler’s concept of fatigue life and a description of the S-N curves. A brief
description of the fractographic characteristics of fatigue fracture surfaces and
mechanisms is given. The central part of this chapter presents themechanical methods
of fatigue characterization, describes the factors that affect fatigue endurance and
explain the most widely accepted methods to estimate the fatigue life of structural
components, including the Haigh’s diagram, the Weibull’s statistical analysis, the
Miner’s rule and the Manson and Coffin Universal Slopes Method. The fatigue crack
growth behavior and the Paris’ law are described at the end of the chapter.

7.1 Definition and History of Fatigue

Fatigue is a progressive cracking process under the action of repetitive or fluc-
tuating loads that culminates in the fracture of a material. Since the beginning of
the use of materials, fatigue has been a concern for both engineering and science,
mainly because fatigue can occur in components under stresses significantly below
the yield strength, thus in the early eras of industrialization, fatigue was not con-
sidered in design nor predicted for in-service components, but its consequences
were often catastrophic. In addition, fatigue does not produce apparent changes
either in geometry or microstructure and the fatigue cracks are very fine, so it is
difficult to detect during in-service inspections. All of this made fatigue to be
considered as the main cause of failure of mechanical and structural components.

The fatigue phenomenon was acquainted early in the nineteenth century. In that
time, the brittle-like fractures of machinery and structural components that failed by
fatigue was interpreted as a “crystallization” a way to say embrittlement- of metal
caused by frequent use, so it was believed that in-service materials aged until they
would become brittle. Thanks to the works of the German engineer August Wöhler,
in the second half of the XIX century, it was known that fatigue is a progressive
cracking process produced by the action of repeated loads. Wöhler introduced the
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formal concept of fatigue and his contributions are still relevant nowadays. It is
known that fatigue occurs in practically all engineering materials, including plastics
and ceramics, but despite the great scientific and technological advances obtained,
fatigue is yet to be thoroughly understood and currently, a great deal of research is
carried out in order to better understand its mechanisms, to improve the fatigue
resistance of engineering materials, discover new crack detection methods and to
increase the accuracy of the methods to predict fatigue life.

For fatigue to take place, it is necessary to comply with three conditions:

1. A tension stress high enough, but below the tensile strength of the material.
2. A stress variation higher than a material property called “fatigue limit”.
3. A sufficient number of accumulated load cycles.

If any of the three conditions is absent, fatigue will not occur, however the
identification of a fatigue causing condition requires a careful analysis. As shown in
the examples of Table 7.1, there may be cases in which fatigue does not occur, even
when the three above mentioned conditions are present. The main reason is that the
magnitude of each one of the three factors should be enough to cause the
phenomenon.

In engineering design, it is unimportant whether fatigue failures will occur or
not, because theoretically fatigue loading occur all the time, but instead the
important questions are: How long it will take for it to happen (number of cycles)?
And, if such length of time or number of cycles is longer than the expected service
time of the component? For this reasons fatigue is assessed in terms of elapsed time
or number of cycles to failure, which is termed as fatigue life. Unfortunately fatigue
life is very difficult to predict, because there are many factors that influence it,
among which the most important are:

1. State of stress and stress concentration (Geometry)
2. Mechanical properties (hardness, tensile strength, fracture toughness)
3. Microstructure and thermal treatment
4. Temperature and environment
5. Residual stresses
6. Surface finish.

Before analyzing the characteristics of fatigue and the effect of internal variables
(mechanical properties, microstructure, residual stress) and external (environment,
stress concentration, surface finish), it is interesting to know the historical events
that encouraged fatigue research or that contributed to a better understanding of the
phenomenon. Table 7.2 presents a brief review of the paramount events in fatigue
history.

In 1860, Wöler carried out the first scientific research on fatigue by cyclic load
tests at a constant stress amplitude, presenting his results in graphs of Stress
amplitude vs. logarithm of number of failure cycles, known as life curves or S-N
that have the form shown in Fig. 7.1. Thanks to such development, the first dis-
coveries were made in regards with the nature of fatigue, among which outstand:
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Table 7.1 Examples of the likelihood of having fatigue failure

Case Likelihood
of fatigue

Analysis of causes

Airplane wings High The wings are always under fluctuating
stresses, in each takeoff and landing and during
the flight. An airplane makes thousands of
flights during its service life

Internal combustion motor
moving parts

High These parts are under high amplitude and
frequency stresses. A typical car motor works
at average 2500 rpm for several thousand hours

Elevator cable High The stresses are mainly tensile and there are
large load fluctuations and high frequency of
use

Truck chassis Medium The loads vary over a wide range and repeat
large number of times, but designers restrict
stresses bellow the fatigue limit. Often
operators overload their trucks

The columns of a metallic
structure building

Medium The column is under quasi-static compression
stresses, but earthquakes introduce oscillating
stresses that can be high enough to cause
fatigue, but the period of return of significant
earthquakes can be of several years, depending
on the geographical zone

Bolts in machinery, pumps
cases and other rotating
equipment

Medium They are designed to endure a la large number
of load cycles, but overtightening or a corrosive
environment may lead to premature fatigue
failures

Automobile body Low The vibration of the motor is transferred to the
car’s body and there are variable stresses
induced by the wind pressure, however their
amplitude is very low to as produce fatigue

Large oil storage tank Low The shell is under fluctuating stresses caused by
the filling and discharge operations, however
this operation is performed few times a month,
so there is not enough number of stress cycles

Oil transport pipeline Low The stress significantly fluctuate during startups
and shutdowns, however, they happen rarely
since oil transport pipelines operate under
steady and continuous conditions most of the
time

1. The number of cycles necessary to produce failure by fatigue increases by a
power function of the stress amplitude.

2. There is a stress amplitude value under which fatigue does not occur, termed as
fatigue limit.
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Table 7.2 Historical synopsis of fatigue

Year Event

1837 Wilhelm Albert publishes the first article on fatigue

1843 In England it is recognized that railroad wheels and rails can be the result of
repetitive stresses. It is wrongly assumed that frequent use “crystalizes” metals,
favoring brittle fracture

1850 The term “fatigue” is introduced to describe failures resulting of the frequent use
of metallic components

1860 August Wöhler, in Germany carries out the first fatigue tests. He introduced the
concept of fatigue life, the S-N curves and the fatigue limit. His studies focused
on railroads

1890 Gerber and Goodman in England study the effect of mean stress in fatigue

1919 The 1919 Boston Great Molasses Flood is attributed to a fatigue failure.
The ASME Boiler and Pressure Vessel Code is introduced, where fatigue is
prevented by limiting allowable stresses

1920 A great slip activity is observed in fatigued metallic components, which leads to
the idea that cyclic plastic strain is the mechanism of fatigue. The first textbooks
on fatigue are published

1930 Great improvements on the fatigue life of automotive parts are achieved by shoot
peening treatment. It is discovered that shoot peening induces compressive
stresses that increase the fatigue limit

1945 Miner introduce the cumulative fatigue damage criterion in aircraft design, based
on the linear damage hypothesis introduced by Palmgren in 1924

1952 The manufacturer, de Havilland of the United Kingdom introduces, the first
commercial passenger jet airliner the DH 106 Comet. In 1954 two Comets
crashed after around 3000 flights, due to fatigue of the hull. As a consequence,
the structural design is improved to reduce stress concentrators that caused
fatigue and the remaining life concept is introduced into the design of airplanes,
replacing the design by infinite life assumption

1950 Closed loop servo-hydraulic machines are introduced; they allow the
performance of pre-determined load pattern fatigue tests

1951 Weibull introduces a statistical distribution function that can be applied to
estimate the probability of fatigue failures

1960 Manson and Coffin publish the Universal Slopes Law

1963 Paul C. Paris demonstrates the relation between the stress intensity factor and the
fatigue crack growth rate, initiating the study of fatigue from the fracture
mechanics point of view

1967 The collapse of a bridge in West Virginia, USA is caused by a fatigue crack that
reached its critical size in a time much shorter than the originally expected. The
acceleration of fatigue is attributed to corrosion. The concept of corrosion-fatigue
is introduced

1970 An F-111 military aircraft suffers an accident caused by a pre-existing crack in a
forged component that grew by fatigue after several hundred hours of flight. The
investigation of this failure inaugurated the use of fracture mechanics in the
assessment of crack-like flaws detected in-service in aircraft, both military and
civil

(continued)
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3. The presence of stress concentrators reduces drastically the number of failure
cycles.

Later on, it was observed that fatigue could be divided into three stages which
are:

Stage I. Damage accumulation and crack nucleation stage. Also called “in-
ternal damage”, it happens in absence of stress concentrators. In this stage, cyclic
deformation produces dislocation substructure that lead to the formation of surface
geometric discontinuities which will further develop as cracks. The extension of
this stage depends on the stress concentration. At low stress amplitudes and stress
concentration, this stage may represent up to 90% of the fatigue life.

Stage II. Crack growth. Consists on the stable propagation of a fatigue crack,
where the crack growth rate depends on the magnitude of the stress intensity factor
amplitude, because the crack grows within an elastically deformed body and the
crack-tip plastic zone is much smaller than the ligament size. The fatigue mecha-
nism is related to the cyclic strain in the plastic zone and is strongly influenced by
the environment.

Table 7.2 (continued)

Year Event

1972 Elber discovers the crack closure phenomenon of fatigue cracks, which explains
the effects of average stress, overloads, and other factors in fatigue crack growth

1988 The Aloha Airlines Flight 243 suffered a fuselage fatigue failure while flying at
24,000 feet (7300 m). The pilot was able to land safely at Kahului airport on
Maui. This accident proved the success of damage tolerant designs based on
fracture mechanics

Current
days

Great advances in the study of fatigue mechanisms
Fatigue studies in composite and ceramic materials
Studies on interactions of fatigue with corrosion and creep
Introduction of fatigue assessment methods into the fitness-for-service standards
and structural integrity codes
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Fatigue limit

Fig. 7.1 Fatigue life curve,
known as “S-N curve”
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Stage III. Final fracture. When the crack is about to reach its critical size,
fracture mechanism combines cyclic deformation at the crack tip with static fracture
mechanisms, such as cleavage or ductile tearing by void coalescence.

7.2 Fatigue Fracture

Fatigue fractures are easily identifiable due to the typical appearance of the fatigue
fracture surface, which is schematically shown in Fig. 7.2. The main characteristic
of fatigue fracture surfaces is the presence of parallel arc marks in the form of
waves, whose center seems to be located in the start zone. Such marks are referred
to as beach marks for their similarity to the ondulations formed by the wind and tide
on a sandy beach.

Typical fracture surfaces can be divided into three zones:

1. Crack initiation zone. It is the zone where the crack first nucleates and starts
growing. The fracture surface at the initiation site is smooth, flat, shiny and with
small steps formed by the simultaneous nucleation of several cracks.

2. Stable growth zone. The fracture is a relatively flat surface, perpendicularly
oriented to the direction of the maximum principal tension stress. It can be either
shiny or opaque, depending on the environment where the failed piece was. The
beach marks appear in this stage, and they are formed by load amplitude
variations, temporary arrest of the crack or by environmental changes.

3. Final fracture zone. When the crack is close to reaching its critical size, the
high stress concentration leads to a transition of the fracture mechanism that
turns the fracture surface rougher and slanted, up to an angle close to 45° with
respect to the maximum tensile stress direction, forming a shear lip in the final
detachment zone, its final height depends on the material ductility.

Fibrous fracture
Final shear lip

Crack 
advance 

front

Origin
Fine texture

Ratchet 
marks

Beach marks

Rough texture

Fig. 7.2 Scheme of a typical fracture surface by fatigue
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Generally, fatigue cracks start on a free surface and are often associated to stress
concentrators, such as grooves, holes or pre-existing cracks, so it is relatively easy
to identify the fracture initiation site. Only in few cases, like casts with severe
internal defects such as blows and shrinkage, or materials with sharp shaped pre-
cipitates, may have fatigue cracks that initiate in the material’s bulk, beneath the
free surface. Nonetheless, the characteristics of these fatigue fractures are similar to
those observed on fatigue fractures initiated on the free surface. The extent of each
fatigue fracture zone depends on the magnitude of stress concentration, load
amplitude and fracture toughness of material. The schemes of Fig. 7.3 show some
typical configurations of fatigue fracture surfaces in bars under alternating bending
stresses.

Fatigue mechanisms. In components with neither pre-existing cracks nor stress
concentrators, the fatigue initiating mechanism is by dislocation glide. The most
widely known model is the intrusion-extrusion, as proposed by Wood, which is
schematically depicted in Fig. 7.4. In this model, the dominating slip plane goes
through an alternate gliding process leading to the formation of metal extrusions on
planes where dislocations reach a free surface. To keep continuity, the opposite
process takes place on a close by plane; that is, the emission of dislocations into the
material, thus forming an intrusion. When the intrusion is sufficiently sharp and
deep, it turns into a crack. Such mechanism is favored by the planar slip conditions,
where plastic deformation along dense slip bands is dominant.

It is an accepted fact that the presence of moderately or severely corrosive
environments shortens the initiation stage of fatigue as compared to vacuum or inert
environments. An experimental observation is that a gaseous corrosive environment

Low stress 
concentration

Low stress amplitude High stress amplitude

Final rupture 

High stress 
concentration

Final rupture zone

Fig. 7.3 Effect of the stress amplitude and stress concentration on the appearance of alternating
bending fatigue fracture surface
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promotes the absorption of chemical species through the slip bands that further
form cavities causing decohesion of the slip bands, as schematically shown in
Fig. 7.5.

In strongly oxidant conditions, as it occurs in ovens, heaters and furnaces, the
thick layers of brittle oxides fracture under tension, originating microcracks. Such
microcracks provide an easy path for the intake of oxidant agents, forming an oxide
penetration that cracks again and the process repeats. This mechanism is known as
thermal fatigue and is shown schematically in Fig. 7.6.

Once the crack has nucleated and reached a macroscopic size (visible at plain
sight), fatigue crack growth goes into Stage II, where the crack propagates under
linear-elastic stress-strain conditions. The most remarkable characteristic of Stage II

Free surface

Slip band

Intrusion

Extrusion

Crack 
nuclei

Fig. 7.4 Nucleation of cracks by fatigue due to the formation of intrusions and extrusions on the
gliding bands

Crack nuclei

Decohesion

Surface step

Slip band

Diffusion

Cavitation

Tension

Fig. 7.5 Nucleation of cracks by fatigue due to cavitation of glide bands

Oxide layer

Slip band

Cracked oxide

Internal 
oxidation Fatigue 

crack

Fig. 7.6 Nucleation of fatigue cracks due to the mechanism known as thermal fatigue
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fatigue fracture surfaces at microscopic level are the striations, whose typical aspect
is shown in Fig. 7.7. Striations are small parallel grooves with a spacing that
matches the macroscopic crack growth rate, therefore, each striation corresponds to
one load cycle.

The presence of microscopic striations in a fracture is unmistakable evidence of
fatigue, but its absence does not mean that it is not fatigue, because striations are not
formed under several conditions. It has been experimentally demonstrated that the
formation of striations requires that the following conditions are met:

(1) Stage II of crack growth, preferably in a high level of DK.
(2) Moderately corrosive atmosphere (humid air).
(3) High ductility (ef > 20% at the test temperature).
(4) Characteristics of both multiple slip and cross slip in the process zone.
(5) Mode I of crack opening displacement or the prevalence of it.

Up to date, a universal mechanism of striation formation has not been recog-
nized, although it is generally accepted that the alternating plastic deformation at
the crack tip is the basic mechanism of Stage II fatigue. Pelloux, in 1969, proposed
that a Stage II fatigue crack may move forward by the alternate plastic slip at the
crack tip, where striations are formed due to the irreversibility of slip caused by
surface oxidation and gas adsorption. This model is schematically presented in
Fig. 7.8, and it succeed in explaining the existence of striations in the air and their
absence in vacuum, although it is questionable why in noble metals, in which the
oxide layer is so thin as to exert an effect on the reversibility of slip, perfectly
defined striations are observed.

Nix and Flower [1] observed the dislocation substructures under the fracture
surfaces aluminum plates fatigued in air. They found alternate bands of high and
low dislocation densities, matching the striation spacing. Based on such observa-
tions, they assumed that in the up-load half cycle, high density dislocation bands are
formed, but at maximum load, the hydrogen formed by decomposition of air
moisture is absorbed into the plastic zone, causing a crack extension by cleavage.
McEvily and Gonzalez [2] made direct observations of the cracks tips of metals
fatigued in air and vacuum. They found that the tip of cracks fatigued in air are

Fig. 7.7 Appearance of
microscopic striations on
Stage II fatigue fracture
surfaces
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sharper than those in vacuum, as shown in Fig. 7.9. They attributed this effect to
localization of cyclic plastic deformation in air, caused by a higher dislocation slip
irreversibility induced by a thin oxide layer and hydrogen adsorption at the crack tip
surface in air. Again, hydrogen is produced by the catalytic decomposition of
humidity in the air.

7.3 Mechanical Characterization of Fatigue

Fatigue is characterized by the applied load cycle, which features three main
characteristics: (1) amplitude, (2) frequency and (3) mean stress, these are shown in
Fig. 7.10. The load cycle amplitude (Dr) is defined as the difference between
maximum (rmax) and minimum stress (rmin).

Pmin

Pmax

Pmin

Pmax

Pmin

Air Vacuum

Striation

Fig. 7.8 Crack growth by fatigue mechanism through alternate slip as proposed by Pelloux

Vacuum Air

Fig. 7.9 Crack tip deformation of stainless steel fatigued in vacuum and air [2]
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Dr ¼ rmax � rmin

Since Dr does not indicate the location of the mean stresses in the cycle, it is
necessary to introduce the R ratio, defined as R ¼ rmin=rmax. The load cycle as a
function of R is shown in Fig. 7.11.
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Fig. 7.10 Load cycle parameters
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Fig. 7.11 Load cycle patterns as a function of the R value
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The types of fatigue cycles, based on the shape of the load ramp are shown in
Fig. 7.12. These are the typical types, although in real life there may be combi-
nations of them.

As it was already mentioned, the aim of a fatigue assessment is to determine the
fatigue life or fatigue endurance, which is the number of load cycles that a material
withstands until failure at a given stress amplitude. The basic test to determine the
fatigue life is carried out by applying on a smooth bar a constant amplitude load
wave of predetermined form and frequency and recording the number of cycles to
failure. Fatigue tests can be the following types:

• Tests of in-service components. They are carried out on the already installed
components operating in actual service conditions, applying the necessary
instrumentation to record the load pattern and the counting the number of
elapsed cycles. They are used when it is desired to assess the performance in real
life conditions, but rarely are conducted to failure, because the objective is to
verify whether the component can endure a predetermined number of cycles
without failure. They are costly and difficult to perform due to the complexity of
the instrumentation to record the load cycles.

• Bench tests on actual components. In these tests, the component is fitted on a
machine that applies a cyclic load pattern, similar to the one that occurs in the
actual service. Usually the test stress amplitude is higher than the expected in
service to accelerate the test. They are used as final proof of a design and for
quality control of critical components such as hydraulic car brake tubing,
helicopter rotors, cranes, elevators and etcetera. They are also used for assessing
the performance of components that receive high frequency use such as
switches, airplane seats, locks, and so forth; in this case the tests are performed
on a sample of a production lot.
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Fig. 7.12 Typical fatigue cycles according to the load ramp shape
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• Normalized laboratory tests. These are standardized tests where the procedure,
test specimens, equipment, instrumentation and presentation of results are
specified to assure precision and representativeness. The most common stan-
dards are those of the American Society for Testing Materials (ASTM) and the
International Standards Organization (ISO). The most common laboratory
fatigue tests are:

– S-N life tests: Described byASTME466-15 “Standard Practice for Conducting
Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic
Materials”. It consists of a smooth specimen (no grooves nor notched) with a
geometry that produces a uniform stress. A constant load amplitude is applied,
with fixed R and frequency, under controlled environment conditions. The
results are presented in the form of S-N curves. The results are extrapolatable
and useful for design,materials selection and Fitness-For-Service assessments.
Since the number of failure cycles in these tests is usually high (more than tens
of thousands), they are termed as high-cycle fatigue.

– Low cycle strain-controlled fatigue test: The test is described in the ASTM
E606-12 “Standard Test Method for Strain-Controlled Fatigue Testing”. It
uses a specimen of regular geometry, with no precracks or grooves, tested at
constant stress amplitude where the maximum stress surpasses the yield
strength to produce plastic strain. The stress-strain cycle is recorded. It is
used for research since the equipment and instrumentation are costly. As the
number of failure cycles in these tests is usually below ten thousand, they are
called low cycle fatigue tests.

– Crack growth tests: The test is described in the ASTM E647–15e1 “Standard
Test Method for Measurement of Fatigue Growth Rates”. In these, a load
cycle pattern is applied to a pre-cracked specimen and crack growth is
continuously measured, along with the number of cycles. The crack growth
rate data (da/dN) as a function of the stress intensity factor amplitude DK are
recorded to plot the Paris curves. The load amplitude and the specimen
dimensions are adjusted so the crack grows in linear-elastic conditions so the
DK function is valid. They are very precise, and the results can be applied for
a variety of purposes such as life assessment, Fitness-For-Service, material
selection and in fatigue research.

S-N Life Curves. The results of fatigue life tests are typically presented in the
S-N curve, which is a graph on semi-logarithmic paper of the stress amplitude,
represented by the symbol Dr, versus the number of cycles to failure represented by
the symbol Nf. The typical S-N curves for metallic materials have the form shown in
Fig. 7.13. The main feature of the S-N curve is that Nf exponentially varies with
respect to Dr, indicating that fatigue life is quite sensitive to stress level. The stress
level in which the S-N curve becomes asymptotic represents the fatigue limit. For
practical purposes, the fatigue limit is defined as the stress level in which the
material endures more than 108 cycles. However, neither all materials nor all load
cases exhibit a fatigue limit, as for example, non-ferrous materials such as alu-
minum. Also, the presence of grooves, residual stresses and corrosive environments
can suppress the fatigue limit.
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At first, the interpretation of an S-N curve is simple: the further up and to the
right the curve is, the better fatigue strength. However, the entire assessment
interval has to be considered. For example, in Fig. 7.14, the performance of
material B is better at high Dr values, but at lower Dr values the opposite occurs,
material A is better and additionally has a higher fatigue limit.

Another relevant behavior revealed by the S-N curves is that fatigue strength is
proportional to tensile strength. Table 7.3 shows the tension properties and fatigue
limit for some metallic alloys widely used in engineering application. For steels, it
was found that the fatigue limit (rLim) is approximately:

rLim ¼ 0:5rf; forruts � 200 ksi

rLim ¼ 100 ksi; forruts [ 200 ksi

Number of cycles to failure (Nf) 

Ferrous material

Non-ferrous material

Fatigue limit

1081

∆σ

104 106102

Fig. 7.13 Typical S-N curve for metallic materials

Log Nf

A

B

∆σ

Fig. 7.14 S-N curve of two
materials, where material A
has a better performance than
B at lower stress amplitudes
and vice versa
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where ruts is the tensile strength. These correlations are widely accepted, although
it must be remembered that only apply for carbon and low alloy steels, but fails for
non-ferrous materials, corrosive environments, high temperatures or rough surfaces,
where the fatigue limit is severely reduced.

Table 7.3 Tension properties and fatigue limit based on 108 cycles of metallic alloys

Material Condition ruts

MPa (ksi)
rYS

MPa (ksi)
rLim

MPa (ksi)

Steels

1015 Annealed 455 (66) 275 (40) 240 (35)

1040 Normalized 670 (97) 405 (59) 345 (50)

1040 Quenched 965 (140) 855 (124) 410 (60)

4340 Normalized 745 (108) 475 (69) 340 (49)

4340 Q&T (204 °C) 1950 (283) 1640 (238) 480 (70)

4340 Q&T (427 °C) 1530 (222) 1380 (200) 470 (68)

4340 Q&T (538 °C) 1260 (183) 1170 (170) 670 (97)

HY140 Q&T (538 °C) 1030 (149) 980 (142) 480 (70)

D6AC Q&T (260 °C) 2000 (290) 1720 (250) 690 (100)

9Ni–4Co–0.25C Q&T (315 °C) 1930 (280) 1760 (255) 620 (90)

300M – 2000 (290) 1670 (242) 800 (116)

Aluminum alloys

1100 Annealed 90 (13) 34 (5) 34 (5)

3014 T6 483 (70) 414 (60) 124 (18)

3024 T3 483 (70) 345 (50) 138 (20)

6061 T6 310 (45) 276 (40) 97 (14)

7075 T6 572 (83) 503 (73) 159 (23)

Titanium alloys

Ti–6Al–4V Annealed 1035 (150) 885 (128) 515 (75)

Ti–6Al–2Sn–4Zr–2Mo Annealed 895 (130) 825 (120) 485 (70)

Ti–5Al–2Sn–2Zr–4Mo–
4Cr

Annealed 1185 (172) 1130 (164) 675 (98)

Copper alloys

80Cu–30Zn Annealed 524 (76) 435 (63) 145 (21)

90Cu–10Zn Annealed 420 (61) 370 (54) 160 (23)

Magnesium alloys

HK31A–T6 T6 215 (31) 110 (16) 62–83 (9–12)

AZ91A Annealed 235 (34) 160 (23) 69–96 (10–14)
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7.4 Factors Affecting Fatigue

The main external factors that affect fatigue are: environment, surface finish and
load history, whereas the internal factors are those inherent to the material such as
mechanical properties microstructure, and material defects. In the following para-
graphs, some of the most important factors in fatigue life will be analyzed.

The most important external factor affecting fatigue is stress concentration, that
not only reduces the fatigue life, but it may make the fatigue limit disappear. The
main reason is because stress concentration locally increases the stress amplitude,
thus exponentially reducing the fatigue endurance. The quantitative effect of stress
concentration by semi-elliptical notches on the fully reversed (R = −1.0) S-N
curves was proposed by Neuber, by the strength reduction factor Kf given by the
following equation:

Kf ¼ 1þ q Kt � 1ð Þ

where Kt is the elastic stress concentration factor under fixed load, q is a notch
sensitivity parameter, so if q = 0, the material is insensitive to notches and if
q = 1.0 there is full notch sensitivity. Peterson proposed a formula to estimate the
value of q, as:

q ¼ 1
1þ a

r

where r is the notch radius, and a is a material’s parameter calculated by the
following equations:

a ¼ 0:0254
2070
ruts

� �1:8
; MPa;mm½ �

a ¼ 0:001
300
ruts

� �1:8
; ksi; in½ �

The effect of notches on fatigue endurance is calculated by multiplying Dr by Kf

and reading the value of Nf from the S-N curve. It is important to point out that this
method only applies for high-cycle fatigue (N � 105). A quick estimate of the
effect of stress concentration on the S-N curve can be made by plotting a straight
between the points (ruts, N = 1 cycle) and the value of Dr corresponding to 106

cycles, in a semi-logarithmic plot, as shown in Fig. 7.15. Then, another straight line
is plotted from the same origin to the point valor Dr (106 cycles) Kf, this line
corresponds to the notched S-N curve.

The surface condition is closely related to stress concentration, but at a less
degree. As shown in Fig. 7.16, the rougher the surface is, lesser the fatigue strength.
The reason for such behavior is that, in rough surfaces the crack initiation stage is
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practically eliminated, so the cracks begin to grow since the very beginning of the
cyclic loading.

The next effect in importance is the environment. It is well known that fatigue
can be purely mechanical and occur in inert environments such as vacuum, but the
common case for metallic materials is that the service environment is either mod-
erately corrosive, like air, or very corrosive like seawater. In the S-N curve, the
effect of environment is similar to that of stress concentration, that means that the
more corrosive the environment the lesser the fatigue strength, while highly
aggressive environments suppress the fatigue limit disappears, as shown in
Fig. 7.17. The effect of the environment corrosiveness in fatigue is attributed to the
fact that during crack growth the new fracture surfaces are very active and absorb
chemical species that dissolve the material or make it more brittle, thus facilitating
crack growth. There is a special condition called fatigue-corrosion, which appears

No notches, Kf = 1.0

106

With notches,  Kf > 1.0

Log N
1 

σuts

∆σ

Fig. 7.15 Estimation of the S-N curve of a notched specimen, for fully reversed loading R = −1

Rough surface

Polished surface

Log N

∆σ
Fig. 7.16 Effects of surface
condition on the S-N curve of
a metallic material
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when the crack grows due to the combination of stress corrosion cracking and
mechanical fatigue.

Finally, the intrinsic factor that most influences fatigue is the microstructure, the
main effects are shown schematically in Fig. 7.18. As it is known, microstructure
determines mechanical properties, which have a strong effect in fatigue strength, but
additionally, the microstructure determines the slip mode, that is, the dislocations
behavior, in addition to influencing on the crack path and the fracture mechanism,
thus affecting the three stages of fatigue.

As a general rule, the lowest fatigue strength is exhibited by pure metals,
probably because they are more susceptible to corrosion and have low mechanical
strength. Solid solutions have a higher fatigue strength, mainly due to their higher

Moderately 
corrosive

Inert

Very corrosive

Log N

∆σ

Fig. 7.17 Effect of environment on the S-N curve of a metallic material

Phase mixture

Dispersion strengthening

Solid solution

Log N

Pure

∆σ

Fig. 7.18 Effect of microstructure on the S-N curve of metallic alloys
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mechanical strength. Second phase aggregates are mechanically stronger than solid
solutions, but second phases also provide crack closure mechanisms that delay
crack growth, which increases fatigue life. Finally, the highest fatigue strengths are
observed in materials hardened by particle dispersion, a behavior attributed to the
excellent combination of mechanical properties and the delaying effects of the
precipitates on the fatigue crack growth mechanism.

7.5 Cyclic Strain Behavior

The invention of closed loop servohydraulic testing machines in the 1950s allowed
the study of mechanical behavior of materials under cyclic strain thanks to the
capability of these machines to apply predetermined load patterns and instanta-
neously measure the load-strain response. Figure 7.19 shows a scheme of a closed
loop servo hydraulic mechanical testing machine.

A closed loop testing machine consists of a load frame, with a moving head and
a fixed one where the specimen is held by a set of grips. A load cell is placed on the
fixed head while the moving head is a hydraulic actuator activated by a
servo-controlled valve. The system is completed with a linear variable differential
transducer (LVDT) that measures the displacement and an extensometer to measure
strain. The signal of the transducers is compared with the preset load pattern and the
servo-control adjusts the actuator to obtain the pre-set load, displacement or strain.
Since the comparison is made at high frequency (MHz), the adjustment is almost
instantaneous, so the control is executed on real time.

By monitoring the stress and strain in a servo-hydraulic closed loop machine, a
hysteresis curve can be obtained, which depending on the strain cycle can be as

Extensometer
Δε

Load cell, 
ΔP

Specimen

Load 
frame

Grip

Actuator

Comparator 

Load pattern

Controller

Servo-valve

Pump

LVDT, Δl

Fig. 7.19 Schematic of a closed loop servo-hydraulic mechanical testing machine

7.4 Factors Affecting Fatigue 205



www.manaraa.com

shown in Fig. 7.20. Early research showed that internal damage by fatigue occurs
only when there is a cyclic plastic strain component, all of which led to the study of
cyclic strain through the elastic-plastic hysteresis cycle; so this area was termed as
cyclic strain behavior.

If the hysteresis loop is recorded during several cycles, two types of responses
can be observed, as shown in Fig. 7.21. One case is when the amplitude of the
hysteresis loop progressively diminishes until reaching a constant amplitude, ter-
med as saturation, at this point it is said that the material exhibits cyclic hardening.
The opposite behavior is when the hysteresis loop amplitude increases up to
reaching saturation as well, then it is said that the behavior is cyclic softening.

Elastic-Plastic hysteresis

σ

ε

σmax

+σOYield

ε pl

Elastic hysteresis

σ

ε

σmax

σmin

Fig. 7.20 Cyclic load hysteresis curves

Time Time

Saturation

+ε

–ε

+ε

–ε

Saturation
Cyclic hardening Cyclic softening

Fig. 7.21 Hysteresis loop response under cyclic loading
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Smith et al. [3] observed that cyclic hardening occurs primarily in annealed
materials whereas softening is observed in cold worked materials. In other words, in
cyclic deformation, strain hardened materials soften and soft annealed materials
harden. Manson also found that most engineering alloys, that meet the condition
ruts/r0 > 1.4, cyclically harden, and if ruts/r0 < 1.2, they soften during cyclic
strain; for values in between, the response is variable. Furthermore, it was found
that other engineering materials, such as polymers and ceramics, do not exhibit
neither cyclic hardening nor softening. If saturation has been reached, and the
material is tested in a monotonic uniaxial tension, the stress-strain response may
notably differ from the material without previous cyclic strain, as shown in
Fig. 7.22.

An equation to calculate the total strain amplitude can be derived as the sum of
elastic strain amplitude Dee, plus plastic strain amplitude Dep, which has the fol-
lowing form:

De ¼ Dee þDep ¼ Dr
E

þ Dr
K 0

� �1=n0

where Dr is the stress amplitude, E is the Young’s modulus, K′ and n′ are the
Hollomon’s equation constants, determined from the real stress-strain curve of the
material cyclically strained until saturation. The n′ values for most engineering
alloys varies from 0.1 to 0.2.

The TEM observation of thin foils prepared form initially annealed metals
subject to cyclic strain, show that the dislocation density rapidly increases after the
first strain cycles, reaching dislocation densities similar to those of heavily cold
worked metals, as shown in the example of Fig. 7.23. As the grains get filled with
dislocations, they go through intense interactions mechanisms like those of strain
hardening. In previously cold-worked materials that are cyclically strained, the
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Fig. 7.22 Uniaxial tension response of a metallic material with and without previous cyclic strain
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initial dislocation arrays are modified. Feltner and Laird [4] elaborated a map of the
dislocation substructures produced by cyclic strain in ƒcc materials as a function of
temperature, stacking fault energy (SFE) and strain amplitude, which is shown in
Fig. 7.24. They found that wavy slip materials (high SFE) feature the same dis-
location substructures, independently of the initial condition, whether annealed or
cold worked, whereas in planar slip materials (low SFE), the final dislocation array
depends on the initial condition.

Fig. 7.23 Evolution of dislocation arrays produced by cyclic deformation [5]
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Fig. 7.24 Map of dislocation arrays produced by cyclic deformation in ƒcc metallic materials
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7.6 Fatigue Life

Since fatigue tests to generate S-N curves are costly and time consuming, several
methods have been proposed to estimate fatigue life as a function of stress
amplitude (ra), mean stress (rm), yield strength (rYS) or tensile strength (ruts). The
most common equations for fully-reversed fatigue are:

ra
rLim

þ rm
rYS

¼ 1 Soderberg EUA; 1930ð Þ

ra
rLim

þ rm
ruts

¼ 1 Goodman England; 1899ð Þ

ra
rLim

þ rm
ruts

� �2

¼ 1 Gerber Germany; 1874ð Þ

The previous equations are graphically representation in the Haigh’s diagram
shown in Fig. 7.25. Its use is as follows: A point of coordinates (ra, rm) is located
in the Haigh’s diagram. If the point falls within the axes and the curve, fatigue life is
infinite, but if it falls off the limits, the component will fail prematurely.

In general, Goodman and Gerber’s models fit best the experimental data and for
that reason they are the mostly used in industry, whereas Soderber’s method is quite
conservative and thus not much used. Gerber’s model is applied for ductile materials
and Goodman’s fits better for high strength materials with relatively low ductility.

Statistical analysis of S-N data. If a high enough number of fatigue tests is
performed at the same stress level, the S-N data may appear as a Gauss bell
distribution, as shown in Fig. 7.26. The area under the bell distribution represents
the failure probability, at the middle of the bell, there is a 50% failure probability,
that is to mean that 50% of the specimens will fail before the corresponding number
of cycles, represented by N50. At three standard deviations to the right of the mean,
99% of the specimens will have failed before enduring N99 cycles and at three

a 
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Lim
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Soderberg
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Fig. 7.25 Haigh’s diagram
for determining fatigue life
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standard deviations to left of the mean, only 1% of the specimens may have
failed after N1 cycles. By joining the points of the same failure probability for each
stress level, a fatigue probability curve may be obtained.

The interpretation of fatigue data as failure probability is more convenient than
the absolute numbers. For example, if a steel is meant to fabricate an aircraft
landing gear fitting bolt, its design must be made for minimum failure probability,
for instance 1% Failure probability, because it is a critical component. Thus, the
number of allowable load cycles before inspection or replacement will be N1, at the
expected maximum stress amplitude. On the other hand, if the same steel is used for
fitting seats inside the cabin, a failure would not be as serious, therefore, the design
can be done at, say, 50% Failure probability, then the inspection or replacement
would be carried out after a much higher number of cycles (since the N scale is
logarithmic), or else the design would be for a higher stress. The only problem is
that a rather high number of tests would be required in order to obtain a repre-
sentative distribution of the Nƒ values at a stress level, which means a significant
investment in time and cost, that is why statistical analysis is a valuable alternative.

In 1961, Weibull [6] introduced a statistical analysis method to calculate fatigue
failure probabilities from a limited number of tests. Such procedure is based on the
following probability distribution.

F Nð Þ ¼ 1� exp � N
q

� �b
" #

where: F(N) is the fraction of population that fails at N cycles and Dr constant. The
parameter q is the characteristic life at 63.2% of failure probability (which corre-
sponds to ±1 standard deviation off mean life), b is a parameter related to the
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Fig. 7.26 Statistic dispersion of data in an S-N curve and %Probability of failure curves
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dispersion amplitude. Introducing logarithms, the previous equation can be
expressed as:

log log
1

1� F Nð Þ
� �

¼ b logN � b log q

The plot of this equation, in loglog versus log scale, is a straight line, with
b slope and from which the q value can be obtained. Type loglog versus log graphs
are known as probabilistic graphs and from them the Npp value can be determined,
where pp corresponds to a given percent probability of failure, furthermore this data
can be transferred to a probabilistic S-N curve, as shown in Fig. 7.27.

Weibull demonstrated that failure probability F(N) can be estimated from a
reduced number of data (n):

F Nð Þ ¼ i
1þ n

where i is the iesim value of N, given in an increasing order; that is, for n number of
data, i = 1 for the minimum value of N and i = n for the maximum value of N. The
following example illustrates the practical use of the Wiebull analysis, where the
N values are given randomly to make the example more explicit.

Example The results of a constant amplitude fatigue life test are listed below.
Determine the values of the Weibull constants b and q.

Solution The first step is to assign the ith value of the N data in increasing order
and calculate the value of F(N) and then, calculate the values logN and loglog[1/
(1 − F(N)]. The results are given in the table below:

log log

log N

∆σ1

∆σ2

N10 N90

90

10

1– R(N)
1

b

log N

∆σ

∆σ1

∆σ2

N10 N90

10% Failure probability

90% Failure probability

[ ]

Fig. 7.27 Construction of a probabilistic S-N curve from the Weibul curve
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No. i F(N) = i/(1 + n) log N loglog[1/(1 − F(N)]

1,202,264 3 3/(1 + 9) = 0.3 6.080 −0.810

900,000 1 0.1 5.954 −1.340

1,412,538 5 0.5 6.150 −0.521

1,364,583 4 0.4 6.135 −0.654

1,659,586 7 0.7 6.220 −0.282

1,945,360 9 0.9 6.289 0.000

1,761,976 8 0.8 6.246 −0.156

1,135,010 2 0.2 6.055 −1.014

1,584,893 6 0.6 6.20 −0.400
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The value of b is the slope of the best fit straight line of the loglog[1/(1 − F(N)]
versus LogN plot, which is 4.0 and the value of q is the corresponding value of
N when F(N) = 63.2%, thus loglog[1/(1 − F(N)] = 0.362. So from the above
graphic it becomes 6.198 (1,579,103 cycles). The endurance cycles for 99 and 1%
probability of failure can also be determined: they are 2,313,396 and 500,034
cycles, respectively.

In the above example is clearly seen that the value of b represents the dispersion
of life data. At b = 3.5 there is completely random Gaussian data distribution;
values of b � 1.0, indicate a widespread dispersion, meaning that a significant
fraction of data will be far below average, termed as “infant mortality” or “pre-
mature failure”. On the contrary, if b > 3.5 it is beneficial because the life dis-
persion is low and therefore there is high fatigue life predictability, so the designer
can be confident of the expected endurance of the component and the established
replacement periods. Finally, if the data plotted on probabilistic paper (loglog vs.
log) does not follow a straight line, the data are not random and there is a specific
cause that deviates them. A non-random situation that is important from the tech-
nological point of view appears in some low-alloy steels that exhibit cyclic strain
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heating, which leads to premature failure, making a deflection to the left of the
Weibul’s graph lower part.

The ASME “Boiler and Pressure Vessel” codes, as well as the API 579-1/ASME
FFS-1 “Fitness-For-Service”, use the S-N approach for fatigue design and assess-
ment. The fatigue design curves are S-N curves developed form smooth, base metal
bars tested at room temperature. These codes address two curves for most of the
ferritic materials used in Class 1 vessels: one for materials with ruts < 552 MPa
(80 ksi), shown in Fig. 7.28, the other for materials with 793 MPa
(115 ksi) < rUTS < 892 MPa (130 ksi). The interpolation for materials with inter-
mediate ruts is allowed.

According to the ASME code, fatigue is assessed in terms of the alternating
stress intensity (Sa) which is based on the Tresca’s failure criterion, therefore Sa is
calculated with the following equation:

Sa ¼ 1
2

Smax � Sminð Þ

where Smax and Smin are the maximum and minimum stresses at the assessment
zone of the component. The curves allow to determine the endurance cycles at the
determined stress amplitude, so the designer can establish a design service life, and
if this is insufficient, a new stress amplitude level may be established to accomplish
the desired endurance limit, then the design is modified accordingly, may be by
increasing the thickness or limiting the allowable stress amplitude. In
Fitness-For-Service assessments, the analysis is reverse, that is: if the in-service
number of cycles equals or exceeds the value of Nf obtained from the S-N curve, the
component is rejected by having a high probability of failure. On the other hand, if
Nf at the assessment stress amplitude is greater than the number of in-service stress
cycles, the difference will be the remaining life.

Notice that the S-N curve of Fig. 7.28 shows that at 10 cycles, Sa = 4000 MPa
(580 ksi), which is more than 10 times greater than the typical yield strength (Sys) of

Fig. 7.28 Fatigue curve for ferritic steels for temperatures not exceeding 371 °C and
rUTS � 552 MPa (80 ksi). Source Figure 14B1.M, API 579-1/ASME FFS-1 2016
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structural steels (345 MPa, 50 ksi). Since these stress levels are never expected for
both, normal and abnormal operating condition, the ASME fatigue analysis
approach is not considered for 10 or less cycles. It is interesting also that at one
million cycles (106), Sa = 86 MPa (12.5 ksi), while the maximum allowable stress
for the ASME S-VIII and ANSI B31.3 codes is 138 MPa (20 ksi), thus Sallow/
Sa = 1.6, which gives a considerable safety margin for fatigue endurance of pres-
sure vessels and piping designed under these codes.

Effect of variable loads: The load amplitude variation is a frequent condition
during the service of mechanical and structural components. Most of the times, the
fatigue life under a variable load spectrum can be analyzed by separating the
spectrum into a number of blocks of constant load amplitude, as schematically
illustrated in Fig. 7.29.

The “Miner’s rule”, proposed by M.A. Miner in 1945, states that the sum of the
fraction fatigue lives of each block in the load spectrum equals one, this is:

Xk
i¼1

ni
Ni
f
¼ 1

where k is the number of constant amplitude blocks, ni is the number of cycles in
each block and Nƒ

i is the number of failure cycles at each constant load amplitude
block. The following example illustrate the use of the Miner’s rule.

A marine pipeline is subject to alternating deflections by strong storm currents,
combined with vortex induced vibration. The deformation amplitude by storm cur-
rents isDe1 = 0.01, whereas the deformation amplitude by vortex induced vibration is
De1 = 0.00001. If the storm frequency is four per year (1.268 � 10−7 cycles/s) and
the frequency of vortex induced vibration is 20 cycles/s, what is fatigue life of the
pipeline?

Solution The problem can be divided into two blocks, so the Miner’s rule is:

n1=N
1
f þ n2=N

2
f ¼ 1

=
Time Time

1

2

Fig. 7.29 Separation of a variable load pattern (left) into two constant stress amplitude patterns
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where Nf
1 is the number of cycles to failure under the storm current deformation

amplitude and Nƒ
2 is the number of cycles to failure due to the vortex induced

vibration, which are calculated by solving for Nƒ the AWS formulas:

For storms: De � 0.002, thus: Nf
1 = (0.055/De1)

2.5 = (0.055/0.01)2.5 = 71 cycles
For vortex: De < 0.002, thus: Nf

2 = (0.010/De2)
4 = (0.010/0.00001)4 = 1012 cycles

Considering that the failure time (t) is equal to the frequency divided by the
number of failure cycles, and solving Miner’s equation for t:

t ¼ 1
f1
Nf 1

þ f2
Nf 2

¼ 1:116� 109s ¼ 35:4 years

7.7 The Universal Slopes Method of Fatigue

In 1964, Manson and Coffin, researchers from the NASA Lewis Research Center in
Cleveland, Ohio, U.S.A., proposed an expression to estimate fatigue life of
un-notched components, based on the monotonic uniaxial tension properties. This
expression was strongly needed because of the high cost of high cycle fatigue tests,
which additionally are time consuming. The principle of this method is based on the
fact that fatigue life (Nƒ) depends on the deformation amplitude, which in turn,
depends on the uniaxial tension properties of the material.

As already seen, the cyclic deformation amplitude is:

De ¼ Dee þDep

Manson and Coffin found that the elastic component is given by:

Dee ¼
r0f 2Nf
� �b
E

where r0
f is the fatigue strength coefficient, defined by the stress value at the

hysteresis curve intersection in one load cycle, Nƒ is the number of cycles to failure,
E is Young’s modulus and b is the fatigue exponent. Likewise, they found that the
plastic component of the cycle is:

Dep ¼ e0f 2Nf
� �c

where e0f is the fatigue ductility coefficient, defined by the deformation value at the
hysteresis curve intersection in one load cycle and c is the fatigue ductility expo-
nent. Therefore, the Manson-Coffin Law is expressed as:
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De ¼ r0f
E

2Nf
� �b þ e0f 2Nf

� �c
The cyclic load test procedure for the determination of r0

f and e0f is described in
the ASTM E606 standard. The Manson-Coffin Law turned out to be very useful to
solve practical problems such as:

(a) Calculate the maximum allowable deformation amplitude to endure a given
number of cycles.

(b) Calculate the number of cycles to failure at a given deformation amplitude.
(c) Select the best material for fatigue life (the best material has the highest De).

The values of the Manson-Coffin equation constants for several metallic alloys
of common commercial use are given in Table 7.4.

The use of the Manson-Coffin Law is easier in logarithmic form, this is:

lnDee ¼ b ln 2Nf
� �þ ln ðr0

j=EÞ
lnDep ¼ c ln 2Nf

� �þ ln e0f

In a log-log plot, both equations are straight lines, so the life curve is, as shown
in Fig. 7.30.

As it can be observed on Table 7.5, b and c vary very little from one material to
other, thus the curves for many materials fall within a narrow band. By taking the
mean values, a general expression can be obtained, known as Universal Slopes
Law.

De ¼ 3:5
rUTS
E

N�0:12
f þ ef N

�0:6
f

Table 7.4 Constants of cyclic deformation for common alloys (stresses in MPa). Data taken from
“Deformation and fracture mechanics of Eng. Matls.”. R.W. Hertzberg, John Willey & Sons

MATERIAL rys/r0
ys n/n′ ef/ e0f rf/r0

f b c

SAE 1015 steel
annealed

225/240 0.26/0.22 1.14/0.95 725/825 −0.11 −0.64

SAE 1045 steel
quenched

1365/825 0.076/0.146 0.72/0.60 2725/2725 −0.081 −0.6

SAE 4340 steel
quenched

1370/825 –/0.15 0.48/0.48 1560/2000 −0.091 −0.60

Inox. 304 steel annealed 255/715 –/0.36 1.37/1.02 1570/2415 −0.15 −0.77

Aluminum 2024 T4 305/440 0.20/0.08 0.43/0.21 635/1015 −0.11 −0.52

Aluminum 7075 T6 470/525 0.113/0.146 0.41/0.19 745/1315 −0.126 −0.52
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It is useful to know that for practical purposes, the fatigue ductility coefficient
can be approximated by the following equation:

ef ¼ ln
100

100�%RA

� �

where %RA is the percent of area reduction in the uniaxial tension test. This
equation allows estimating fatigue life of metallic alloys in terms of their uniaxial
tension properties, which are easy to know.

Manson and Ruiz proposed a modification to the universal slopes law so as to
express it as a function of the stress amplitude, because frequently it is not possible
to know the strain amplitude.

Log ( )

’

’

f

3.5( f / )

Elastic line

Plastic line

Log Nf

c

b

Total Fatigue Life curve

Fig. 7.30 Elastic and plastic lines of the S-N curve to determine the constants of the
Manson-Coffin Law

Table 7.5 Paris constants for
common engineering
materials in air, room
temperature and other
non-corrosive environments

Material m C

Carbon steel 3.0 1.65 � 10−8

Forged steel 3.0 7.27 � 10−8

High strength steel, rys 552–
2026 Mpa

2.25 1.36 � 10−7

Austenitic stainless steel 3.25 5.61 � 10−9

Grey cast iron 4.0 8 � 10−9

Nodular cast iron 3.5 10−8

Aluminum 7021 2.5 10−8

Nickel base alloy 3.3 4 � 10−12

Titanium base alloy 5.0 10−11

Polycarbonate 4.3 6 � 10−5

Epoxy 2.0 10−4

For da/dN in mm/cycle and DK in MPa
p
m
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This equation has the form:

Dr� ¼ 3:5rUTSN�0:12
f þEe0:6f N�0:6

f

where

Dr� ¼ DrrUTS
2rUTS � Dr

Many codes and standards of design have adopted simplified versions of the
universal slopes law for the high cycle region, like the American Welding Society
(AWS), that proposes the following expressions for welded joints in low carbon
steels for structural and pipelines use:

De ¼ 0:055N�0:4 for De� 0:002

De ¼ 0:010N�0:25 for De\0:002

7.8 Fatigue Crack Growth

As it has been stated, fatigue is a process where a crack is nucleated and grows until
it causes the final fracture of a component under repeated loads. In the great
majority of structural components, the normal operation stresses are below the yield
strength, so the crack growth grows in an elastically strained body, therefore linear
elastic fracture mechanics may be used to characterize the behavior of fatigue
cracks.

In 1961, the American scientist Paris [7] demonstrated that fatigue crack growth
rate, defined by da/dN, depends on the magnitude of the amplitude stress at the
crack tip, which in linear-elastic conditions depends on the stress intensity factor
amplitude DK, by the following reasoning:

In the load cycle, the stress intensity factor amplitude DK, is defined as:

DK ¼ Kmax � Kmin

The general expression for K is:

K ¼ Pb
ffiffiffiffiffiffi
pa

p

where P is the load, b is a geometrical factor and a is the crack size. Since the load
amplitude is DP = Pmax – Pmin, the stress intensity factor amplitude can be
expressed as:
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DK ¼ DPb
ffiffiffiffiffiffi
pa

p

If DP is constant, the load cycle is completely defined with the R ratio:

R ¼ Pmin=Pmax

To prove his ideas, Paris did an experiment consisting on applying a constant
amplitude cyclic load DP onto a pre cracked plate, and measuring the crack growth
as a function of the number of elapsed cycles. As predicted by fracture mechanics,
the stress intensity factor increases as the crack grows, so Paris regrouped the data,
as schematically depicted in the plots of Fig. 7.31.

By plotting the data pairs (DK, da/dN) in a log-log plot Paris found that the
graph was linear over most of the intermediate DK range. At the low DK end, the
da/dN values are very small (<10−8 mm/cycle), so this defined a threshold value
(DKth). In the other end, at high DK, da/dN sharply increases up to a limit value
given by the fracture toughness KIC. These characteristics are shown in Fig. 7.32.

The equation that represent the linear portion of the log-log plot is known as the
“Paris Law” and it is:

da
dN

¼ CDKm

where C and m are empiric constants, their values for some engineering material are
shown on Table 7.5.

The da/dN versus DK graph is usually divided into three regions for most
engineering materials, these regions are:

• Region I, Near Threshold: The initial values of da/dN are very low, but rapidly
increase as DK increases. It is assumed that the crack does not propagate below
(DKth). This stage is strongly influenced by the stress level and the
microstructure.

ao

N= 0 N

a

da/dN

ao

∆Ko ∆K

a

Fig. 7.31 Left, crack size and DK variation as a function of elapsed cycles at constant DP
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• Region II, Paris Region: The da/dN values follow the Paris Law. Normally the
microscopic crack extension per cycle is equal to da/dN. It is strongly influenced
by the environment.

• Region III, Unstable Crack Propagation: da/dN increases sharply. The fatigue
fracture mechanism is combined with static modes of fracture.

Another important aspect of Paris curve is the effect of R. It has been experi-
mentally observed that Paris curves at different R are parallel, that is, they have the
same m value, but different C, therefore it is affected by R. For many materials, the
dependence of da/dN on R can be described by the equation proposed by Walker,
which has the form:

da
dN

¼ Cw

1� Rð Þn DK
n

where Cw is the value of C when R = 0. Since fracture occurs when Kmax = KIC,
and according to the definition of R and DK, it can be stated that:

Kmax ¼ DK
1� R

da
/d

N
  (

m
m

/c
yc

le
)

10-2

Region I

10-8

10-6

10-4

Region II

KIC

da/dN= C ∆Km

Region III

m

∆Kth log ∆K

Fig. 7.32 Schematic plot of the fatigue crack growth rate as a function of the stress intensity
factor amplitude as found by Paris
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So, when DK = (1 – R)KIC, the crack growth rate would tend towards its
maximum value, which is the right end of Region III in Paris graph. Forman et al.
[8] proposed a more general expression to incorporate the effect that R has in the
following form:

da
dN

¼ CDKn

ð1� RÞKc� DK

The fatigue analysis based on the fracture mechanics concept, holds two major
advantages over the classic S-N curves approach. The first advantage is that fatigue
crack growth experimental data does not show the great dispersion observed in the
S-N curves and the second one is that the Paris Law equation can be integrated in
order to determine the number of cycles to reach a maximum allowable crack size,
thus allowing to estimate the remaining life of a fatigued component that already
contain cracks. The calculation is valid, as long as linear elastic strain conditions
prevail in the component and the K function is known. The procedure is as follows.
Starting from the initial crack size a0, the Paris Law equation can be integrated by
the separation of variables, obtaining:

N ¼
Zac
a0

da
cDKm ¼ 1

C bDrð Þmpm=2
Zac
a0

da
am=2

where ac is the critical (or maximum allowable) crack size. Since many engineering
alloys feature m values close to 3.0, the integration of Paris law equation can be
expressed as:

N ¼ 2

C Dr
ffiffiffi
p

pð Þ3
1ffiffiffiffiffi
a0

p � 1ffiffiffiffiffi
ac

p
� �

Finally it is important to remember that, when applying the Paris Law equation
to assess fatigue crack growth, there has to be great certainty on the applied stress
intensity range based on the applied loading, crack configuration and residual
stresses, In addition, the Paris Law constants should be according to the material,
service environment and R ratio. This is because the results may significantly
change on the input data, as seen in the following example:

Example A cylindrical pressure vessel of diameter D = 1500 mm and wall thick-
ness t = 6 mm made of ferritic steel operates at 21 °C in a non-aggressive envi-
ronment at a pressure of P = 1.0 MPa (145 psi). An in-service inspection detected a
semielliptical crack of constant aspect (a/2c = 0.25) of a = 3 mm depth. Determine
the number of full pressure cycles in which the crack will cause a leak, assuming
that, when a = t, the crack is still stable (leak-before-break condition).
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Solution The stress amplitude, according to the ASME B&PV code is:

Sa ¼ 1
2

Smax � Sminð Þ

Smax ¼ PD
2t

¼ 1MPað Þ 1500mmð Þ
2 6mmð Þ ¼ 125MPa

If Smin = 0, Sa = 62.5 MPa.
For a ferritic steel at 21 °C in a non-aggressive environment: C = 1.65 � 10−11

and m = 3.0 (m/cycle, MPa
p
m). Substituting into the integrated Paris Law

equation:

N ¼ 2

C Sa
ffiffiffi
p

pð Þ3
1ffiffiffiffiffi
ao

p � 1ffiffiffiffiffi
ac

p
� �

¼ 2

1:65� 10�11 62:5
ffiffiffi
p

pð Þ3
1ffiffiffiffiffiffiffiffiffiffiffi
0:003

p � 1ffiffiffiffiffiffiffiffiffiffiffi
0:006

p
� �

¼ 476;750

Notice that the calculation of N is very sensitive to C, because its values are
10−11 order of magnitude. The effect of Sa it is very strong too, since it is raised to
the 3th power, so an increment of pressure to double will reduce N by eight-fold.

The environment also has a strong effect of the Paris curves. As mentioned
before, fatigue can occur in inert environments, so it can be purely mechanical,
however, since most engineering materials, especially metals, are susceptible to the
environment, the fatigue crack growth under corrosion-fatigue interaction is the
general case. The effect of corrosion on the fatigue crack growth curves is observed
in two ways: the first one corresponds to a behavior where da/dN increases by the

Log(∆K)

Corrosion-fatigue + SCC

Corrosion-fatigue

Air
Inert environment 

lo
g(

da
/d

N
)

Fig. 7.33 Effect of environment on the Paris curve for metallic materials
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effect of the corrosive environment. In this case the Paris plot shifts to the left and
upwards, reducing the values of DKTh and m (slope of Stage II). The second type of
interaction is called “Fatigue + Stress Corrosion Cracking”, where the crack
propagation occurs by the combination of cyclic loading and Stress Corrosion
Cracking (SCC). This process requires that DK is above threshold value identified
by KISCC. When the Fatigue + SCC occur, the Paris curve displays a plateau in the
intermediate range of DK values. Figure 7.33 shows the schematic Paris graphs for
these categories. Finally, under corrosion-fatigue interactions, the effects of R and
frequency are stronger.
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Chapter 8
High Temperature Mechanical Behavior

Abstract This chapter starts with the description of the effects of elevated
temperature on the deformation characteristics of materials by means of the
Stress-Rupture and the Constant-Stress creep curves. The Creep Power Law for
secondary creep is introduced along with the Larson and Miner creep life prediction
method. Further, the deformation mechanisms in creep are described, as well as the
creep fracture mechanism. Then, the ideas are applied to explain the foundations for
the development of high-temperature service materials, known as refractory.
The chapter ends with a brief description of the superplastic behavior that results of
the combination of strengthening mechanism and high temperature behavior.

8.1 High Temperature Deformation

Some of the most important technological applications of engineering materials are
at high temperature service conditions, such as: gas turbines, internal combustion
engines, boilers, reactors, heat exchangers, ovens, furnaces and hot forming
equipment. All these components are big and costly and their failure usually carries
along high consequences (fatalities, injuries and environmental damage) and major
economic losses; hence high temperature mechanical behavior is a strategic field for
technological and scientific research.

The exposure of engineering materials to high temperatures has several effects,
which altogether affect the mechanical behavior. The most important effects are:

1. Yield stress and tensile strength reduction.
2. Increment of ductility by increasing dislocations mobility.
3. Recovery and recrystallization of cold formed materials.
4. Grain growth.
5. Increment of diffusivity.
6. Dissolution and precipitation of second phases.
7. Incipient fusion.
8. Excessive oxidation.
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All these processes are thermally activated, therefore, a sufficiently high tem-
perature is required for them to happen, referred as hot work. As seen in Chap. 2,
the hot work condition is relative to the material´s melting point or fusion tem-
perature (Tf). The rule is that at working temperatures of more than 0.4Tf, where Tf
is in Kelvin degrees, the material exhibits high temperature behavior, which is
primarily characterized by the strength reduction, suppression of strain hardening,
and most important, the plastic strain becomes time-dependent, so the material
deforms as if it was a high viscosity fluid. Such phenomenon is called thermo-
fluence or most commonly creep.

From the engineering point of view, creep is defined as plastic deformation
through time under a constant stress. After some time, creep culminates in fracture,
therefore it is also a failure mechanism. It is currently known that creep is caused by
thermally activated diffusive processes, and although these processes occur at any
temperature, it is at high temperature (>0.5Tf) that it becomes of practical signifi-
cance, and for that reason creep is considered a high temperature phenomenon.

Perhaps one of the most revealing manifestations about creep is the deformation
and distortion of metallic structures affected by fire, as seen in the examples of
Fig. 8.1, where the heat of a fire soften columns and beams, causing the plastic flow
of the structural components under their own weight.

The general procedure for creep testing is described in the ASTM E139 standard
and consists on applying a constant load to a smooth tensile test specimen at
constant temperature and measuring the elongation as a function of time. Heating is
applied by placing the test specimen inside a heating chamber, usually with a
controlled atmosphere to prevent excessive oxidation. The test time may last several
hours up to years, so creep tests require specialized laboratory equipment and are
very costly.

Fig. 8.1 Example of creep in metallic structures affected by fire. Notice that most of the structural
components deformed and collapsed under their own weight
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In practical engineering creep tests, the load is applied by leverage system with
dead weights, designed in such a way that, as the test specimen elongates, the
leverage arm shortens, thus reducing the load and compensating the stress incre-
ment caused by the reduction of the specimen’s cross-sectional, maintaining a fairly
constant-stress. The scheme of Fig. 8.2 shows the experimental arrangement of this
test.

When the constant-load creep tests for the same material are carried out at
different load levels and the rupture time for each load case is recorded and plotted
on logarithmic scale, then a stress-rupture curve is obtained, which has the shape
shown in Fig. 8.3. The main characteristic of the stress-rupture test is that, as both
stress and temperature increase, the rupture-time drops in an exponential way.
Stress-rupture tests are conducted for periods up to 10,000 h and they are specifi-
cally applied to determine the high-temperature strength, and the minimum creep
rate of engineering materials. These characteristic make the stress-rupture test
useful for design, material selection and quality control purposes.

If the specimen’s elongation is recorded and plotted as a function of time, a
creep curve is obtained, which has the idealized shape shown in Fig. 8.4. The creep
curve starts at an instantaneous elongation of the specimen eo, followed by a
reduction of the creep rate (de/dt), then the creep rate becomes constant for most of
the elapsed time and finally the creep rate increases rapidly until rupture occurs.

The constant-stress creep curve has the following characteristics:

Stage I, transient creep. It starts at an instantaneous initial deformation eo, which is
proportional to the applied stress. The creep rate is initially high, but it decreases
gradually until reaching a constant value. In this stage, the dislocations substructure
is rearranged and some phase transformations may occur, such as dissolution or

Fig. 8.2 Constant leverage creep test apparatus
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precipitation of second-phases. Once the phase transformations, the strain harden-
ing (interaction of dislocations) and recovery processes (dislocation rearrangement
and annihilation) reach a dynamic equilibrium, the creep rate becomes constant.
Stage II, secondary creep. In this stage, the dynamic equilibrium between the strain
hardening and recovery is maintained. The creep rate in this stage is minimum and
is referred to as steady-state creep.
Stage III, tertiary creep. In this stage, microstructural changes, such as precipitate
coarsening and recrystallization, and the reduction in cross-section area increase the
creep rate, along with an increment of vacancy diffusion and grain boundary
sliding. These last two processes progress until the interconnection of grain
boundary voids, lead to intergranular fractures, typical of creep failures.

Secondary creep is the most important stage, from the technological point of
view, as it accounts for the longest creep period, therefore, the majority of research
is aimed to estimate the creep rate in this stage.

Fig. 8.3 Stress-rupture curve
of a low alloy Mo-V steel.
K. Image taken from: Kimura
et al. [1]

Fig. 8.4 Idealized creep
curve at constant stress
showing the three stages of
creep
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Andrade carried out the first creep tests in 1914 and found that, most metals
follow an empirical equation expressed as:

e ¼ e0 1þ bt1=3
� �

ekt

where t stands for time, eo is the instantaneous initial deformation and k and b are
experimental constants. It was until 1960, that Garofalo proposed an equation that
fits better to the idealized creep curve and it has this form:

e ¼ e0 þ 1� e�rtð Þþ de
dt

� �
s
t

where (de/dt)s is the creep rate in secondary creep and r is the ratio of the transient
creep rate divided by the transient creep strain.

8.2 Secondary Creep

In stage II or secondary creep, the creep rate (de/dt), is constant and it is directly
related to the applied stress (r) by the so called Creep Power Law, that has the
form:

de
dt

� �
s
¼ Crn

where C is an experimental constant and n is the secondary creep exponent.
According to this law, the greater the stress, the greater the creep rate, as shown in
Fig. 8.5. This explains why mechanical fasteners such as bolts and screws in
high-temperature service get loosen sometime after they are tightened.

The steady creep rate in Stage II has been adopted as the most important design
parameter for high temperature service components. The majority of codes set a
creep rate limit, in which the applied stress must be adjusted based on the
stress-rupture curve. For example, the typical design value for boiler and direct fire
heater piping, is defined as to (de/dt)s � 1%/100,000 h or 2.8 � 10−11 s−1, so the
pipe’s diameter shall not expand more than 1% in 11.5 years at the design stress.

The secondary creep stage involves a process in which thermal activation pro-
vides the energy to overcome an energy barrier DH, moving the material thermo-
dynamic state, from metastable, to stable. For this reason, the creep rate can be
expressed by an Arrhenius type equation:

de
dt

� �
s
¼ Ae

�DH
RTð Þ
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where DH is the activation energy, T is the absolute temperature, R is the constant
for ideal gases and A is a constant that depends on the material. The determination
of DH is done by solving the previous equation with two creep rate values obtained
at different temperatures in a constant-stress creep test, that is:

de
dt

� �
1
e

DH
RT1 ¼ de

dt

� �
2
e

DH
RT2

From which the activation energy is calculated by:

DH ¼ R
T1T2

T1 � T2

� �
ln

e2
e1

� �

By this procedure it has been found that DH for secondary creep is practically
equal to the activation energy for vacancy diffusion, thus, it has been concluded that
secondary creep is due to vacancy flow. For the same reason, the Stage II creep
mechanism is referred as to diffusive flow.

Table 8.1 shows values of DH for typical high-temperature materials. It can be
observed that DH in materials with melting point between 1000 and 1700 °C (Cu,
Fe, Ni) is three times higher than that of materials with melting point less than 600 °
C (Pb, Al), whereas high melting point materials (Ta, Al2O3, W) have much higher
DH and for such reason they are considered as to refractory.

Fig. 8.5 Effect of stress on
creep curves at constant
temperature
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8.3 Creep Life Prediction

As it has been mentioned, the primary practical interest in the study of creep is to
predict the rupture time. The stress-rupture test is the practical way to assess the
performance of a material at high temperature, however, as mentioned before, these
tests are limited by the testing time. The design life of components for high tem-
perature service, is usually established for a minimum of 10,000 h (about
416 days), but they may be in service for 100,000 h (11.4 years) or more. The
creep design life is defined as a minimum rupture time at the allowable stress and
maximum service temperature, so if the rupture allowable stress is greater than the
minimum rupture strength for the design life, either the design parameters should be
modified, or the material substituted. At first, these criteria obviously requires
knowledge of the stress-rupture curve, like the one shown in Fig. 8.3. But, as
already mentioned, testing to obtain the rupture strength at very long periods is
impractical and costly, consequently the laboratory tests to determine the creep
rupture strength are be done under conditions that give rupture times within a
reasonable time (generally less than 720 h, 30 days). Obviously, tests conditions
that give such rupture times must be extrapolated in order to estimate the expected
duration of high-temperature components. The phenomenological creep equations
are a means to achieve this objective, but they require sophisticated tests to
determine the necessary constants for their use.

In engineering applications, one of the most popular methods to predict creep
life is the Larson-Miller parameter curves. This method,1 introduced by F.
R. Larson and J. Miller in 1952, is based on an Arrhenius type relation, where r is
the creep rate:

r ¼ A expð�DH=RTÞ

Table 8.1 Activation energies DH for secondary creep of engineering materials

Metals Tf (°C) DH (kJ/mol) Refractory materials Tf (°C) DH (kJ/mol)

Lead (Pb) 327 110 Tantalium (Ta) 2996 400

Aluminun (Al) 660 150 Alumina (Al2O3) 2072 620

Cooper (Cu) 1083 205 Tungsten (W) 3410 630

Ferrite (Fe a) 1535 240

Austenite (Fe c) 1535 280

Nickel (Ni) 1453 300

1Larson and Miller [2]
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where A is an experimental constant, DH is the creep activation energy, R is the
ideal gas constant and T is the temperature. This equation can be re arranged as:

DH=R ¼ T ln A� ln rð Þ

The rupture time is inversely proportional to r, that is:

tr / 1=rð Þ

Thus:

� ln t ¼ ln A� DH=RT

Multiplying by T and converting into logarithms base 10, the following equation
is obtained.

DH=R ¼ T Cþ log tð Þ

If the ratio DH=R is independent from stress and temperature, then the material
exhibits the same behavior at a given stress level and therefore, the term T(C + log t)
is constant, and is termed as the Larson-Miller Parameter (LMP) and it allows to
calculate the rupture time L in terms of LMP, by the equation shown below:

log10 L ¼ 1000 LMP rð Þ
T

� C

where L is in hours and T is in absolute degrees and LMP(r) is calculated at the
evaluation stress level in MPa. Figure 8.6 sows the LMP(r) values for a ferritic
steel, L in hours, T is in degrees Kelvin and r in MPa. The equations to calculate
LMP(r) of several materials are provided in the Annex 10B of the API 579-1/
ASME FFS-1 2016. For example, the equation for average LMP(r) of Low Carbon
Steel:

LMPðr; ksiÞ ¼ 39:793713�0:15443414r� 2:6260065 ln r

The value of C for each material has to be experimentally determined by at least
two sets of time-temperature creep tests at constant stress, by the following
procedure.

Assuming that DH=R is a constant at a given stress level, it can be written that:

C ¼ T2 log t2 � T1 log t1ð Þ= T1 � T2ð Þ
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A more precise evaluation can be obtained graphically by the equation:

log t ¼ �CþCte=T

The experimental data log(t) versus. 1/T for different stress levels are plotted and
the value of C is determined by the intersection of the extrapolation to the origin
where 1/T = 0, as shown in Fig. 8.7. The values of C for some steels commonly
used in high-temperature applications are given in Table 8.2. As it can be noticed,
the average value of C is 20 for most ferrous alloys, hence LMP is frequently
expressed as T(20 + log t), where T is in degrees Kelvin and t in hours.

The following example illustrates the use of the Larson-Miller Parameter.

Example Determine the rupture time for an S-590 steel at a stress r = 100 MPa at
1000 °C. Repeat the calculation for: T =700 °C and T =1000 °C, r = 50 MPa.

1000
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T (20 + log t)x103 (K-h)

Fig. 8.6 Larson-Miller
Parameter curve as a function
of stress for a ferritic steel

Fig. 8.7 Determination of
the Larson-Miller Parameter
from the experimental data
log tr versus 1/T obtained at
different stress levels and
extrapolated at 1/T = 0
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Solution

From Fig. 8.6 at r = 100 MPa, T (20 + log t)=25,200
log t ¼ 25;200=Tð Þ � 20 ¼ 25;200=1273� 20 ¼ �0:2
That is, t = 0.62 h (37.5 min)
For T ¼ 500 �C; log t ¼ 25; 200=973� 20 ¼ 5:9
That is, t = 7.93 � 105 h (90.5 years)
For the stress of 50 MPa, T(20 + log t) =27,200
Clearing : log t ¼ 27;200=Tð Þ � 20 ¼ 27; 200=1273� 20 ¼ 1:37
That is, t = 23.3 h.

From the previous example it is clear that temperature has a much greater effect
than stress on the creep rupture time. The practical consequence of this is that it is
more convenient to prevent overheating than to reduce operation stress to increase
the creep rupture time. This may be counterproductive for internal combustion
engine and process equipment, as in most of these applications, the higher the
temperature, the higher efficiency, hence many efforts in creep research are aimed to
the development of materials able to operate at higher temperatures in combination
with high strength.

8.4 Deformation Mechanisms in Creep

Deformation mechanisms in creep primarily depend on slip and grain boundary
sliding. At relatively low temperatures (<0.3Tf) dislocation slip mechanisms prevail,
but at high temperatures (>0.5Tf), mechanisms based on diffusion and grain
boundary glide become predominant, however, the general condition is that these
mechanisms may simultaneously occur. The principal creep deformation mecha-
nisms are:

Dislocation climb. When dislocations move through a crystal at
high-temperature under high stresses, thermal activation helps to overcome the
lattice friction and short-range obstacles located on the slip planes. However, at
intermediate and low stress levels, the dislocation glide is assisted by vacancy
diffusion by a process called as dislocation climb. Dislocation climb is an
out-of-plane movement, which occurs by vacancy diffusion, as schematically

Table 8.2 Constant C for
steels (T in degrees Kelvin
and t in hours)

Alloy C (h)

Low carbon steel 18

Stainless steel 18-8 18

Stainless steel 18-8-Mo 17

Steel 2 ¼ Cr-1 Mo 23

Steel S 590 20

Steel Cr-Mo-Ti-B 22
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shown in Fig. 8.8. When a vacancy exchanges its place with the atom located on
the dislocation line (shaded circle in Fig. 8.8), the segment “climbs” one atomic
position in the lattice. If another vacancy moves towards the dislocation line, the
process is repeated, until the entire dislocation line climbs. This movement pro-
duces shear strain of the crystal, and just like stress-activated glide.

Dislocation climb also assist dislocations overcomes long-range obstacles such
as precipitate particles. Once the dislocation overcame the obstacle by climb, it
continues gliding until it faces another obstacle, and then the climb process repeats,
as schematically in Fig. 8.9.

In 1960, Weertman proposed a model to estimate the strain rate in secondary
creep by dislocation movement, which is applicable at temperatures higher than
0.5Tf, known as the power-law creep, represented by the following equation:

de
dt

� �
s
¼ ADeff Gb

kT

� �
r
G

� �n

where Deff and A and n are experimental constants.
Creep by diffusive flow. This mechanism was proposed by Nabarro-Herring in

1950, and it involves the grains deformation by massive vacancy flow. The
deformation flow is from zones under compression stresses, towards tension
stressed zones. Simultaneously, atoms and vacancies flow in the opposite direction,
producing elongation, as schematically shown in Fig. 8.10.

Fig. 8.8 Climb of an edge dislocation by vacancy exchange

Fig. 8.9 Dislocation climb to overcome non-shearing obstacles
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The phenomenological equation for the diffusive-flow mechanism is:

de
dt

� �
s
¼ 14rb3Dv

kTd2

where d is the grain size and Dv is the lattice diffusion coefficient. At lower
temperatures, close to the limit of the hot work regime, the diffusive-flow mecha-
nism is substituted by a grain boundary sliding mechanism, for which Coble, in
1963, proposed the following model:

de
dt

� �
s
¼ 60rb4Dgb

kTd3

The previous equations show that the grain size plays an important role in
deformation in creep, since it appears raised at the cube power. This indicates that
coarse grain materials have higher creep strength. Such findings have led to the
development of coarse grain materials, and even single-crystals in order to improve
their performance at high temperatures, as it will be discussed further in this
chapter.

8.5 Creep Fracture

Generally, creep fractures are intergranular, since at high temperatures, above the
equicohesive temperature (Teq), as described in Sect. 4.3, the grain boundaries are
weaker than the grains. The intergranular fracture mechanism in creep results from
the combination of grain boundary cavitation and sliding. At macroscopic scale,

Fig. 8.10 Nabarro-Herring
model of creep by diffusive
flow
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creep fractures feature small plastic deformation, minimum neck formation and
high surface roughness, whereas at microscopic scale the fracture path is inter-
granular and the grain facets are covered with numerous dimples. Figure 8.11
shows an example of a typical creep fracture.

At temperatures far above Teq and low stress levels, creep deformation is
dominated by grain boundary sliding, which favors intergranular fracture.
Intergranular fracture in creep occurs by to two basic mechanisms:

1. Grain boundary slip
2. Grain boundary cavitation.

Grain boundary sliding causes decohesion of grain boundary triple joints,
forming wedge-shaped cavities, termed as w-type, as schematically shown in
Fig. 8.12. The w-type cavities are formed preferentially in grain boundaries aligned
to the maximum shear stress, thus in components under uniaxial tensile loads, they
will be at around 45 degrees form the load line.

The condensation of vacancies in the grain boundaries, on the other hand,
originates the formation of round cavities termed as r-type. When the number and
size of the r-type cavities is high enough, they coalesce causing an intergranular
fracture with little plastic strain associated to it.

The growth rate of r-type cavities is controlled by vacancy diffusion and
power-law creep, according to the following equation.

dr=dt ¼ CDVr
mrn

where dr/dt is the cavity growth rate, Dv is the vacancy diffusivity coefficient, r is
the cavity size, m is an experimental constant, and n is the power-law creep
exponent. An interesting aspect of r-type grain boundary cavitation is that,
according to the previous equation, dr/dt depends on the cavity size, meaning that
large cavities grow faster than smaller ones. Additionally, for an r-type cavity to
grow, the work supplied by stress has to be greater than the void surface energy cs.
If this condition is not met, small cavities will reduce their size until collapse.

Fig. 8.11 Macroscopic (left) and microscopic (right) appearance of a typical creep fracture
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The cavity minimum size (ro) in order to maintain a stable growth condition can be
calculated by:

ro ¼ 2cs=rGB

where rGB is the tension stress on the grain boundary. This equation indicates that r-
type cavitation is favored by high tension stresses and low cs values. Since cs
increases in proportion to the content of solid-solution forming elements, solid
solution alloys have better creep strength, because r-type voids have to reach larger
sizes in order to grow and coalesce, so the intergranular fracture process is delayed.

Another important factor is that r-type cavitation preferably occurs in grain
boundaries oriented in direction nearly perpendicular to the maximum tension
stress, as shown in Fig. 8.13.

Creep crack growth. Creep fracture can also occur locally, at specific locations
such as pre-existing cracks or stress concentrators, because, they form local highly
stressed plastic zones, so the creep rate increases, and the creep rupture time is
drastically reduced. The creep crack growth mechanism is schematically depicted in
Fig. 8.14. This is controlled by the cavity growth rate, which in turn, depends on
the stress magnitude at the crack tip. According to fracture mechanics, the extension
of crack in a strained body is determined by the energy release rate, which results
from the balance between the work done by the tractions and the stored strain
energy, as described by Rice’s J-integral (see Sect. 6.4 in this book). But, since
creep is a time-dependent process J has to be expressed as a function of time, dJ/dt.
This derivate is typically represented by the symbol C*, representing the
time-dependent crack energy release rate. It has been experimentally found that:

Fig. 8.12 Formation of w-type cavities by grain boundary sliding
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Fig. 8.13 Distribution of cavities in terms of grain boundary orientation with respect to tension
stress

Fig. 8.14 Local creep crack growth mechanism by cavitation of grain boundaries at stress
concentrators
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da
dt

¼ A C�ð Þn

where (da/dt) is the crack growth rate, A and n are experimental constants.

8.6 High Temperature Materials

The phenomenological equations along with the deformation mechanisms of creep
are useful to predict the effect of variables such as stress, temperature,
microstructure and so forth. Research on creep and creep-strength have set the
foundations for the development of alloys and materials for high-temperature ser-
vice, known as refractory materials. At first, refractory materials must have a high
melting point and high Homologous Temperature, because these two are deter-
mining factors on whether deformation is within the creep regime or not. Second,
refractory materials should have resistance to oxidation and high temperature
corrosion, otherwise their usefulness is limited, such as the case of tungsten, which
has high creep strength, but its oxidation strength is so low that when exposed to air
at high temperature it oxides completely in a matter of few minutes.

In general, the phenomenological equation that describes creep can be gener-
alized as to:

de
dt

� �
s
¼ Cte

rD
TGdn

where (de/dt)s is the secondary creep rate, D is the diffusivity coefficient, G is the
shear elastic modulus, d is the grain size and Cte is a constant depending on the
material. According to this expression, materials with fcc structure are more
resistant to heat than materials with less-compact structures as they have lower
D values. Likewise, materials with high G will have a better performance at high
temperatures. Tungsten, alumina, tantalum, as well as, austenitic stainless steels,
nickel and cobalt based alloys exhibit these characteristics and therefore they are the
main group of materials for high temperature applications.

A term of great importance in the above equation is the grain size (d) because the
exponent n varies between 2 and 3, thus moderate grain size increments, signifi-
cantly increase creep strength. In addition, as mentioned in the previous sections,
the grain boundary cavity distribution depends on the orientation with respect to the
direction of the applied stress, thus the grains perpendicular to the stress direction
have the maximum cavitation, whereas the grain boundaries parallel to the stress,
practically do not suffer it. This has led to the design of coarse-columnar grain
materials, where the long direction of the grains is oriented parallel to the maximum
principal stress direction in order to increase creep strength. Such strategy has gone
as far as developing materials without grain boundaries at all, that means,
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single-crystals. Figure 8.18 shows the evolution of materials for the manufacture of
airplane turbine blades in terms of the grain size structure (Fig. 8.15).

The next microstructural characteristic that improves creep strength is size and
distribution of second-phase precipitates. At first, the precipitates should be stable
and coarse enough to reduce grain boundary sliding; second, they should have a
high melting point, and third, they should have interstitial alloying elements. This
combination reduces diffusivity, dislocation climb and diffusive flow altogether.
These characteristics are featured by nickel-base super alloys, constituted by
cuboidal-shaped gamma precipitates, with ordered crystalline structure, which are
formulated and specially heat treated to obtain a microstructure like the one shown
in Fig. 8.16. Other developments are metallic alloys hardened by alumina or silicon
carbide particles, in order to maximize the stability second phase particles. These
materials are manufactured by powder metallurgy techniques and exhibit
high-temperature strengths as much as 20 times higher than that those of conven-
tional alloys. Table 8.3 lists some of the typical materials for high temperature
applications, with their main characteristics and maximum service temperature.

8.7 Superplastic Behavior

Superplastic behavior, also termed superplasticity is the ability of some materials to
show great elongations in tension, as much as several thousand per cent, so their
appearance after a tension test is like the schematic representation of Fig. 8.17. Not
long ago, superplasticity was considered as laboratory-curiosity, but currently the
need for making complex pieces and reduce manufacturing costs has made

Fig. 8.15 Evolution of creep strength and grain size of materials for blades used in the
combustion section of gas turbines and airplane engines
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superplasticity commercially attractive. To achieve superplastic behavior, it is
required that the material does not develop necks during tensile strain, so the
mechanism of ductile fracture by nucleation and coalescence of internal voids has
to be suppressed (see Chap. 6), therefore the material may continue elongating
without rupture. Such condition is obtained if the material has a high strain hard-
ening coefficient, as it will be shown next.

Fig. 8.16 Microstructure of a
nickel-base super alloy for
high temperature use

Table 8.3 Typical materials for high temperature applications

Material Types Max.
service
temp. (°C)

High alloy solid solution
steels

Austenitic, series 304, 316 y 321
Forged o centrifugal cast

600

Low alloy ferritic steels
strengthened by carbides

Up to 4% Cr + (Mo, V)
Forged or rolled

650

Nickel Base Superalloys:
Ni + (Cr, W, Co)

Supersaturated matrix with ordered precipitates.
Directional solidification with columnar grain or
single crystal

950

Oxides and refractory
carbides: Al2O3, SiC,
Si3N4

Monolithic, thermal spray or dispersion
strengthened mechanically alloyed

1300

Fig. 8.17 Schematic illustration of a tension specimen after superplastic deformation
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From Garofalo’s equation, the equation for secondary creep deformation can be
expressed as:

r ¼ Ct
de
dt

� �m0

where r is the real stress, e is the real strain, t is time, m′ is the dynamic strain
hardening coefficient ad Ct is an experimental constant. Stress is given by r = F/A,
where F is the load and A is the cross section area. If the deformation is uniform, de/
dt = dA/dt, then it can be shown that:

� dA
dt

¼ F
Ct

� � 1
m0 1

A1�m0

� �

According to this equation, as m′ increases, the dA/dt diminishes, and if m′
approaches to 1.0 (linear strain hardening), dA/dt becomes close to zero, which
means that necks will not be formed and thus the material will be superplastic.
Superplastic behavior has been observed in many alloy systems and it is funda-
mentally a dynamic strain-induced precipitation phenomenon. Researchers have
found that superplastic materials must have m′ values higher than 0.5, in addition to
complying with the following requirements:

(1) Low strain rates, from 10−4 to 10−6 s−1

(2) Temperature above 0.5Tf
(3) Grain size less than 10 microns
(4) Dynamic second phase precipitation.

There is still controversy about the superplastic deformation mechanism, but it is
generally acknowledged that it involves extensive grain boundary sliding, where
the deformation of equiaxial is accommodated by grain rotation. During super-
plastic deformation, the crystalline texture is destroyed, and therefore no cell dis-
locations nor subgrains are formed, which indicates that the dislocations are quickly
annihilated as they appear, thus making strain hardening a dynamic process too.

To determine whether a material can be superplastic, a Stress vs. Strain-rate plot
must be constructed from tension tests at several strain rates. The stress-strain rate
relation can be rewritten logarithmically as:

log;r ¼ logCtþm0 logðde=dtÞ
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Thus, by plotting the experimental data of strain rate and stress in a log-log scale,
as shown in Fig. 8.18, the slope of the straight portion of the plot is the coefficientm′,
then if m′ > 0.5 the material may be superplastic. This condition is achieved at
intermediate strain rates, since at low and high strain rates, the deformation mecha-
nisms are diffusive creep and dislocation creep, respectively, therefore, the material
will not exhibit large elongations, because the aforementioned dynamic processes do
not occur.
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Fig. 8.18 Stress-Strain rate curve to determine the potential for superplastic behavior
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